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Abstract 

Information extraction, the problem of generating structured summaries of human-oriented 
text documents, has been studied for over a decade now, but the primary emphasis has been 
on document collections characterized by well-formed prose (e.g., newswire articles). So- 
lutions have often involved the hand-tuning of general natural language processing systems 
to a particular domain. However, such solutions may be difficult to apply to "informal" do- 
mains, domains based on genres characterized by syntactically unparsable text and frequent 
out-of-lexicon terms. With the growth of the Internet, such genres, which include email 
messages, newsgroup posts, and Web pages, are particularly abundant, and there is no lack 
of potential information extraction applications. Examples include a program to extract 
names from personal home pages, or a system that monitors newsgroups where computers 
are offered for sale in search of one that matches a user's specifications. 

This thesis asks whether it is possible to design general-purpose machine learning 
algorithms for such domains. Rather than spend weeks or months manually adapting an 
information extraction system to a new domain, we would like a system we can train on 
some sample documents and expect to do a reasonable job of extracting information from 
new ones. This thesis poses the following questions: What sorts of machine learning al- 
gorithms are suitable for this problem? What kinds of information might a learner exploit 
in an informal domain? Is there a way to combine heterogeneous learners for improved 
performance? 

This thesis presents four learners representative of a diverse set of machine learn- 
ing paradigms—a rote learner (Rote), a statistical term-space learner based on the Naive 
Bayes algorithm (BayeslDF), a hybrid of BayeslDF and the grammatical inference algo- 
rithm Alergia (BayesGI), and a relational learner (SRV). It describes experiments testing 
these learners on three different document collections—electronic seminar announcements, 
newswire articles describing corporate acquisitions, and the home pages of courses and re- 
search projects at four large computer science departments. Finally, it describes a modular 
multistrategy approach which arbitrates among the individual learners, using regression to 
re-rank learners' predictions and achieve performance superior to that of the best individual 
learner on a problem. 
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Chapter 1 

Introduction 

Information extraction is the problem of generating Stereotypie summaries 
from free text. Traditional information extraction is performed on journalistic 
or technical documents and typically involves some linguistic pre-processing. 
In many domains, however, linguistic processing is difficult, if not impossi- 
ble. We would like to design a machine learning system that operates in such 
domains, in addition to more traditional ones. Such a system should exploit 
sources of information such as term frequency statistics, typography, orthog- 
raphy, meta-text (mark-up), and formatting. As a means of investigating the 
usefulness of such information, this thesis presents four machine learning al- 
gorithms from diverse paradigms and studies their performance on several dif- 
ferent information extraction domains. Experiments show it is possible to de- 
sign algorithms that learn to perform extraction competently in the absence 
of linguistic information. Further experiments demonstrate that by combining 
multiple learners an even higher level of competence can be achieved. 

If I were in the market for a bargain computer, then I would benefit from a system 
that monitors newsgroups where computers are offered for sale until it finds a suitable one 
for me. As a critical component of this system I would need a program that converts the 
information in a single newsgroup post into machine-usable form. An individual summary 
produced by my program might take the form of a template with typed slots, each of which 
is filled by a fragment of text from the document (e.g., type: "Pentium"; speed: "200 
MHz."; disksize: "3 Gig"; etc.). The design of such a program is essentially an information 
extraction problem. We know what each document in these newsgroups says in general 
terms; it describes a computer. Information extraction is the problem of extracting the 
essential details particular to a given document. 

Existing work in information extraction can give us some good ideas about how this 
program should be constructed, but we will find large portions of it inapplicable. Most of 
this work assumes that we can perform syntactic and semantic processing of a document. 
Unfortunately, not only do we find strange, syntactically intractable constructions like news 
headers and user signatures in news posts, but sometimes even the body of a message lacks 
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a single grammatical construct. How should my program handle the "messy" text it is 
likely to encounter? How can it exploit whatever conventions of presentation are typical 
of postings for this newsgroup? More interestingly, are there general machine learning 
methods we can use to train a program for use in this and similarly informal domains? 

My research addresses this question. I am interested in designing machine learning 
components for information extraction which are as flexible as possible, which can exploit 
syntactic and semantic information when it is available, but which do not depend on its 
availability. Other sources of useful information include: 

• Term frequency statistics 

• Typography (e.g., capitalization patterns) 

• Meta-text, such as HTML tags 

• Formatting and layout 

The central thesis of this dissertation is that we can design general-purpose machine learn- 
ing algorithms that exploit these non-linguistic sources of information, enough for compe- 
tent performance in many domains, and that by combining learners with different strengths 
and weaknesses we can realize even better information extraction performance. 

1.1   Background 

One of the grand challenges of computer science, in which information extraction plays 
a part, is the development of automatic methods for the management of text, rather than 
just its transmission, storage, or display. Efforts to meet this challenge are nearly as old as 
computer science itself. The decades-old discipline of information retrieval has developed 
automatic methods, typically of a statistical flavor, for indexing large document collections 
and classifying documents. The complementary endeavor of natural language processing 
has sought to model human language processing—with some success, but also with a hard- 
won appreciation of the magnitude of the task. 

The much younger field of information extraction lies somewhere in between these two 
older endeavors in terms of both difficulty and emphasis. Information extraction can be 
regarded as a kind of limited, directed natural language understanding. It assumes the ex- 
istence of a set of documents from a limited domain of discourse, in which each document 
describes one or more entities or events that are similar to those described in other doc- 
uments but that differ in the details. A prototypical example is a collection of newswire 
articles on Latin American terrorism; each document is presumed to describe one or more 
terroristic acts.1 Also defined for a given information extraction task is a template, which 

^n general, documents from other domains may also be present in a collection, so that some sort of 
filtering must be performed either before or during extraction. For the purposes of this thesis, I consider this 
task ancillary to the problem of extraction and do not discuss it further. 
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is a case frame (or set of case frames) that is to hold the information contained in a sin- 
gle article. In our example, this template might have slots for the perpetrator, victim, and 
instrument of the terroristic act, as well as the date on which it occurred. An information 
extraction system designed for this problem needs to "understand" an article only enough 
to populate the slots in this template correctly. Most of these slots typically can be rilled 
with fragments of text taken verbatim from the document, whence the name "information 
extraction." 

There are many variations of the information extraction problem, which has evolved 
over the decade during which it has been recognized as a distinct endeavor. Some of 
this evolution can be traced in the proceedings of the Message Understanding Conference 
(MUC) (Def, 1992; 1993; 1995), the premier forum for research in conventional informa- 
tion extraction. In its hardest form, information extraction involves recognizing multiple 
entities in a document and identifying their relationship in the populated template. For ex- 
ample, the task might be to summarize the details of a corporate joint venture as related in 
a newswire article. Entities might correspond to companies; for each company the infor- 
mation extraction system could be required to extract descriptive information (e.g., name, 
nationality, 1997 net profits, etc.), as well as determine how the various companies men- 
tioned in the article are related (e.g., "Company 3 is the joint venture of Company 1 and 
Company 2"). On the other end of the spectrum is the problem of generic entity recogni- 
tion (or "named entity extraction"), in which the type of the entity is relevant, but not its 
particular role in the document. Simply finding all company names is an example of this 
kind of problem. 

In a typical MUC problem there are multiple distinct sub-tasks, such as relevancy fil- 
tering, extraction, anaphora resolution, and template merging, which together contribute to 
the successful performance of the central task: mapping a document to a summary struc- 
ture. Cardie describes the generic information extraction system as a pipeline in which 
these sub-tasks are performed sequentially on a document (Cardie, 1997). While in many 
domains good performance may require the handling of any or all of these tasks, the one 
task central to all information extraction problems is that of extraction: deciding which 
fragment from a document, if any, to put in a particular slot in the answer template. In this 
thesis I reserve the term information extraction to refer to this task. 

As recent research in the information extraction community has shown, machine learn- 
ing can be of service, both in performing this fragment-to-slot mapping (Kim and Moldovan, 
1995; Riloff, 1996; Soderland, 1996), and in solving associated tasks (Aone and Ben- 
nett, 1996; Cardie, 1993; McCarthy and Lehnert, 1995; Riloff and Lehnert, 1994; 
Soderland and Lehnert, 1994). At the same time, machine learning researchers have 
become increasingly aware of the information extraction task as a source of interesting 
problems (e.g., (Califf, 1998)). This development is part of a general growth of interest 
on the part of the machine learning community in problems involving text, which in turn 
can be attributed to the growth of the Internet and the Web as a source of problem domains. 
In fact, some machine learning researchers, in pursuit of automated methods for handling 
certain Web and Internet problems related to data mining, have discovered their affinity 
to research done in information extraction (Doorenbos et al,   1997; Kushmerick,  1997; 
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Soderland, 1997). Thus, a natural meeting appears to be in progress, between information 
extraction researchers, who have discovered the utility of machine learning methods, and 
machine learning researchers, who as part of an interest in data mining and textual prob- 
lems have come to appreciate information extraction as a source of domains to motivate the 
refinement of existing machine learning methods and the development of new ones. 

One consequence of this meeting is a broadening in scope of the information extraction 
problem. Although traditional research in information extraction has involved domains 
characterized by well-formed prose, many domains for which information extraction so- 
lutions would be useful, such as those consisting of Web pages and Usenet posts, do not 
have this character. In many cases, it may be hard to analyze the syntax of such docu- 
ments with existing techniques. Grammar and good style are often sacrificed for more 
superficial organizational resources, such as simple labels, layout patterns, and mark-up 
tags. It is not the case that Web pages and Usenet posts are formless; rather, standard 
prose is replaced by domain-specific conventions of language and layout. Researchers 
have shown for particular text genres that these conventions and devices can be used to 
learn how to perform extraction (Califf, 1998; Doorenbos et al., 1997; Kushmerick, 1997; 
Soderland, 1997). 

1.2   Point of Departure 

Several projects have investigated the possibility of performing information extraction in 
unconventional domains. The typical project picks a target domain and develops a learner 
that works well with it, but which may not be applicable to a different domain. My goal, in 
contrast, is a package of machine learning techniques that are applicable to as many infor- 
mation extraction domains as possible. Consequently, this dissertation asks the following 
kinds of questions: 

• What level of performance is possible with domain-independent learners? 

• How might such learners be structured, and what kinds of information would they 
use for learning? 

• Can we design learning approaches to which domain-specific information can be 
easily added? 

• Can we integrate multiple learners usefully? 

These considerations determined the kind of research I conducted and the ultimate char- 
acter of this thesis, which might be distinguished from similar work in three ways: in its 
study of diverse domains, its comparison of multiple learners, and its investigation of mul- 
tistrategy learning. In the remainder of this section I elaborate each of these points in turn. 
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1.2.1 Study in Diverse Domains 

My formalization of the information extraction problem, which is presented in Chapter 2, 
is sufficiently broad to cover a wide range of problems. The empirical studies presented in 
this thesis rely on three very different domains: 

• A collection of seminar announcements posted to electronic bulletin boards at Carnegie 
Mellon. Announcements vary considerably in their reliance on well-formed prose, 
and all contain unparsable segments, such as headers. The task in this domain is to 
identify distinguishing details of an upcoming seminar. 

• A subset of documents from the Reuters collection belonging to the acquisition class 
(Lewis, 1992). All documents in this set are written to journalistic standards. The 
task is to identify the parties involved in the acquisition along with other relevant 
details. 

• Project and course pages from the World Wide Web sites of four large computer 
science departments. Here, the task is to find details such as the name and number of 
a course, or the names of a projects members and affiliates. 

While other researchers have described machine learning approaches for each of the text 
genres on which these domains are based—Usenet posts, newswire articles, and World 
Wide Web pages—no study has applied a single fixed learner to such a diverse set of prob- 
lems. The comparison is enlightening, clearly highlighting some of the strengths and weak- 
nesses of the domain-independent approaches I have studied. 

1.2.2 Comparison of Multiple Learners 

The field of machine learning encompasses a rich variety of paradigms according to which 
a new algorithm might be constructed. Candidate paradigms include decision trees, rela- 
tional learning, artificial neural networks, grammatical inference, instance-based learning, 
and statistical approaches such as Naive Bayes. Rather than restrict my attention to a sin- 
gle paradigm, I find it more interesting to compare learners drawn from diverse paradigms. 
Because the performance of any single learner on information extraction tasks is almost 
always substantially worse than human performance, it is hard to assess the significance 
of a learner's achievement by considering it in isolation.2 Therefore, it is important to 
compare learners with each other, or with reasonably competent non-learning algorithmic 
approaches. This thesis is the first to conduct such a comparison for information extraction. 
It presents four learning approaches to information extraction—a "rote" learner, a statisti- 
cal learner, an enhancement of the statistical learner using grammatical inference, and a 
relational learner—and compares them using each of the three domains described in the 
previous section. 

incidentally, human performance is not necessarily 100%. A study conducted as part of MUC-5 rated 
human labelers at about 82% precision and 79% in a domain involving technical micro-electronic texts (Will, 
1993). The best computer systems achieved about 57% precision and 53% recall on the same task. 
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Rote Bayes Gl BayesGI SRV 

What does training 
entail? 

Verbatim storage of 
field instances. 

Construction of 
multiple 
term-frequency tables. 

Construction of a 
regular grammar to 
represent the abstract 
structure of field 
instances. 

Independent training 
of Bayes and Gl. 

Top-down induction 
of logical rules to 
separate field 
instances from 
background text. 

What does testing 
entail? 

Comparing fragments 
against learned 
dictionary for exact 
matches. 

Estimating class 
membership from 
evidence provided by 
position, size, and 
individual tokens of a 
fragment. 

Determining whether 
learned grammar 
accepts a fragment 
expressed in learned 
abstract 
representation. 

Taking the product of 
estimates returned by 
each of Bayes and 
Gl. 

Comparing fragments 
against set of learned 
rules to see if any 
match. 

Form of learned 
hypothesis 

A dictionary of 
verbatim field 
instances 

A collection of 
frequency tables. 

A stochastic regular 
grammar. 

A Bayes classifier 
andaGI classifier. 

A set of logical rules. 

Passes through 
training corpus 

1. Build dictionary. 
2. Count true and false 

matches. 

1. Build frequency 
tables. 

2. Set prediction 
threshold 

1. One pass for each 
entry in transducer. 

2. Transduce field 
instances. 

Sum of Bayes and 
Gl. 

One pass for each 
literal in each rule. 

Meaning of 
confidence 

Specificity of 
matching dictionary 
entry. 

Naive estimate (log 
probability) that 
fragment is a field 
instance. 

Probabiüty that 
learned grammar 
produces a fragment, 
given that it belongs 
in the language 
defined by the 
grammar. 

Naive estimate (log 
probability) that 
fragment is a field 
instance, including 
language-membership 
estimate fromGI. 

Combination of 
estimated accuracy of 
all matching rules. 
Accuracy estimates 
come from rule 
validation on a 
hold-out set of 
documents. 

Typical range of 
confidence 

(0,1) < -20.0. Depends 
on problem. A score 
of -20.0 represents 
very high confidence. 

(0,1). Typically 
closer to 0. 

Approximately same 
as Bayes. 

(0,1) 

Fragment context? No. Yes. No. Yes. Yes. 

Flexible context? No. No. No. No. Yes. 

Use of background 
text 

Used only to 
determine specificity 
of dictionary entries. 

Used to form 
estimates for tokens in 
immediate vicinity of 
fragments. In 
BayeslDF, 
background text is 
also used in heuristic 
modification of all 
individual token 
estimates 

Used in some 
methods for inferring 
transducers. Not used 
in induction of 
grammar. 

See entries for Bayes 
andGI. 

Set of "negative 
examples" explicitly 
enumerated from 
background text. Also 
available for 
exploration of 
fragment context. 

Use of token features Only literal tokens 
used. 

Only literal tokens 
used. 

Used in induction and 
application of abstract 
fragment 
representation 
(transducers). 

See entry for Gl. Selected and applied 
by learner in search 
for best rules. 

Account for whole 
fragment? 

Yes. Yes, and static, 
limited context. 

Yes. Yes. Rules may express 
constraints on certain 
fragment tokens while 
ignoring others. 

TABLE 1.1: Overview of the learners described in this thesis. 
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Table 1.1 compares the four learners described in this thesis. Note that the method 
called Gl in the table is not really considered a standalone learner (it typically performs 
poorly in isolation), but is used as part of an augmentation of Bayes. It is given a separate 
column to make it easier to compare bayesgi, the augmented Bayes, with the other three 
learners. The table presents the following rows: 

• What does training entail? What is the essential activity of the learner during 
induction? 

• What does testing entail? The individual item in the database record to be filled out 
in response to a document is called afield. In Chapter 2, the extraction problem is 
framed as the problem of assessing field membership of individual text fragments in 
a document. How does each algorithm perform this assessment? 

• Form of learned hypothesis What does a learner output after its processing of train- 
ing data? 

• Passes through training corpus In general, a learner may make an arbitrary number 
of passes through the training corpus. How many does a learner make, and what is 
the purpose of each? 

• Meaning of confidence Each learner is designed to produce a confidence whenever 
it sees a fragment in a test document which it believes is an instance of the target 
field. What does this confidence represent? 

• Typical range of confidence What range of values does a prediction confidence 
take? 

• Fragment context? Does a learner pay attention to a fragment's context (the tokens 
in its immediate vicinity) in assessing its membership in the target field? 

• Flexible context? If a learner does use fragment context, is it free to determine the 
size of the context to be used? 

• Use of background text How are training tokens used which are not labeled as part 
of field instance fragments? 

• Use of token features "Token features" are abstractions over individual tokens. 
Some learners only consider the literal tokens in building hypotheses. Does a learner 
use these abstractions, and, if so, how? 

• Account for whole fragment? In assessing a test fragment, is a learner constrained 
to account for every part of it, or can it "choose" to examine only certain salient 
tokens? 

Some of the entries may not make sense unless one has first read the corresponding chap- 
ters. Table 1.1 is intended, therefore, to give a quick overview of the range of approaches 
taken in this thesis, and to support comparisons during and after perusal of individual chap- 
ters. 
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1.2.3   Investigation of Multistrategy Learning 

An increasingly common technique in machine learning is to combine multiple learners in 
an effort to realize better performance than any individual learner. Multistrategy learning 
appears especially well suited for information extraction. Such factors as the typical lack 
of dominance of any single approach and the rich set of possible problem representations 
argue in favor of hybrid or voting approaches. This thesis goes one step beyond a com- 
parison of individual learners to ask whether there is any profit in combining them. Not 
only is one of the learners I study a hybrid—one that performs much better than either of 
its constituents—but I also present several methods for combining arbitrary learners. Ex- 
periments show that, using the best of these methods, it is almost always possible to realize 
better performance than that of the best constituent learner. 

1.3   Claims 

This thesis makes three central claims. These claims embody its emphasis on informal text 
and multistrategy learning. 

Learning without Linguistics Claim Effective information extraction is often 
possible without recourse to natural language processing. 

The bulk of work on information extraction, including research in the uses of machine 
learning for information extraction, has assumed some kind of linguistic pre-processing. 
In contrast, this thesis sets out to show that, often, no such pre-processing is necessary in 
order for effective learning to take place. 

Without doubt, some information extraction problems require, for maximal perfor- 
mance, that syntactic and semantic information be taken into account. There are many 
domains, however, where such information is either difficult to obtain—the seminar an- 
nouncements and Web page domains are good examples—or simply unnecessary. Several 
researchers have demonstrated that in certain domains involving Web pages it is often suf- 
ficient to look for patterns involving HTML tags in order to learn perfect or nearly perfect 
extractors (Kushmerick, 1997; Muslea etal, 1998). This thesis complements their work 
by developing general-purpose learners which by default look for directly accessible pat- 
terns in any domain to which they are applied. 

Note that the acquisitions domain used in this thesis is one for which we would expect 
some linguistic information to be necessary for good performance. This domain serves as 
a good touchstone by which the limitations of the learners described in this thesis can be 
judged. 

No Best Learner Claim There is no single best learning approach to all in- 
formation extraction problems. 
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This claim is impossible to prove empirically. The evidence gathered in this thesis, 
however, lends it strong support. Certainly, learners may vary in sophistication and flexi- 
bility, and more sophisticated learners may perform better on average, but there is too much 
variety in the set of typical information extraction problems for any single fixed approach 
to excel universally. 

Papers on the topic of learning for information extraction, and in machine learning gen- 
erally, often present a single algorithm, demonstrating its effectiveness on a single problem. 
The No Best Learner claim, and the evidence mustered here in support of it, is intended to 
argue for a comparative methodology. We will not really understand information extraction 
until we have identified the key problem types it encompasses and found the best methods 
for each type. Explaining the strengths and weaknesses of various learned extractors in a 
comparative setting is a step in this direction. 

Multistrategy Learning Claim By combining trained information extractors 
we can realize substantial improvements over the performance of the best in- 
dividual extractor. 

If the No Best Learner claim is correct, then there is good reason to believe in this claim. 
A multistrategy approach can always manage to perform as well as the best individual 
learner by always choosing to trust the best learner for any given problem and making that 
learner's predictions its own. What is more, in a setting in which all learners leave plenty of 
room for improvement—as is the case in many, if not most, information extraction tasks— 
we can hope to achieve even better performance by choosing from among learners on an 
example-by-example basis. I may have liked Learner One's prediction on the previous 
document but have reason to believe that Learner Two is better situated to make the right 
prediction on this document. 

Of course, the question is, how do I choose whom to trust? This thesis presents two 
different algorithmic ways of making this decision. One way involves coupling two differ- 
ent learners to produce a hybrid learner. Every extraction decision by this hybrid learner, 
whether to accept or reject a candidate fragment of text, is the result of input from both 
constituent learners. The other way of making the decision takes an arbitrary number of 
learners and treats them as black boxes, modeling their behavior on part of the training 
set and using the resulting models to determine how to handle their predictions on test 
documents. 

1.4   Thesis Organization 

Before we can apply machine learning to information extraction, we must settle on a ba- 
sic representation of the problem that is compatible with machine learning assumptions. 
Chapter 2 presents this representation in the form of a formalization. In the same chapter, 
the problem of evaluation is discussed, and the metrics are presented by which I judge per- 
formance throughout the thesis. To motivate my emphasis on multistrategy learning, and 
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as an illustration of the kinds of information available in a typical document, the notion of 
a document view is introduced, and several example views are shown of a document from 
the seminar announcement collection. 

Chapters 3, 4, and 5 are each devoted to describing various learning approaches to 
information extraction and presenting experimental results in several domains. Chap- 
ter 3 introduces "term-space" learning, learning which only involves term and phrase fre- 
quency statistics. Two learners are defined in this chapter, Rote, a memorizing learner, and 
BayeslDF, a statistical learner based on Naive Bayes as used in document classification. 

Chapter 4 describes an enhancement of BayeslDF using grammatical inference. Each 
of the two learners, BayeslDF and an algorithm based on the grammatical inference method 
Alergia, is trained to perform extraction separately. A third learner is then derived by tightly 
coupling the predictions of the two component learners. Also discussed is the need for 
transduction as a pre-processing step to grammatical inference: In order for grammatical 
inference to be effective, text fragments must first be represented in terms of symbols from 
a small alphabet. How to transform text fragments into these symbol sequences is treated 
as a learning problem in its own right. The solution involves a set of simple token features. 

Chapter 5 presents SRV, a relational learner. SRV uses the same kinds of features as 
are used as part of grammatical inference, but can apply them more flexibly. Experiments in 
all three thesis domains demonstrate SRV's versatility. Two case studies show how SRV's 
default feature set can be extended to capture genre-specific information. 

Chapter 6 presents a second kind of multistrategy learning in which all learners con- 
tribute to an extraction decision for each document. Learners are treated as black boxes, 
and their behavior is modeled using regression and cross-validation on the training set. The 
resulting models are used to decide, on a document-by-document basis, which learner's 
prediction to make official. Three variants of this idea are presented and tested on extrac- 
tion tasks from three domains. The best of these combining methods almost always yields 
performance improvements over the individual learner that is best on a problem. 

Chapter 7 discusses related work, and Chapter 8 concludes. Appendix A presents some 
additional details of the domains used as part of this research, and Appendix B presents 
excerpts each of these domains illustrating typical patterns. Appendix C describes the 
tokenizing library at the heart of all learning algorithms implemented for this thesis. 
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The Problem Space 

In this chapter I define the central problem addressed in this thesis—learning 
a mapping from documents to fragments—and discuss how it might be cast 
as a machine learning problem so that standard approaches can be brought to 
bear. This discussion provides a conceptual framework for the implementa- 
tion of learners, but does not tell us what kinds of information to look for in a 
document during their design. The notion of a document view serves as mo- 
tivation in this regard, and several important views are enumerated. Next, I 
present the performance criteria used to measure learner performance through- 
out the thesis. Finally, I discuss to what extent the task I address fits into the 
traditional information extraction mold, as defined by work presented at the 
Message Understanding Conference. 

The term information extraction has come to refer to a number of related problems. 
Originally, as a discipline within NLP, it denoted a kind of directed document summariza- 
tion, and was the focus of one track of the TIPSTER initiative. Over its history, however, 
as researchers outside the field of NLP have become interested in the problem, it has been 
applied to any kind of text mining, extracting machine-usable data from textual documents. 

When I say "information extraction," I usually mean something much more precise. 
This chapter attempts to define the learning task rigorously. The resulting formal frame- 
work provides a nice opportunity to think about how the learning task might be approached, 
and motivates a discussion of document views. Finally, I compare the problem defined in 
this chapter with that addressed at the Message Understanding Conference (MUC), the 
premier forum for work in traditional information extraction. 

2.1    Problem Definition 

In most of the experiments presented in this thesis, the task to be learned amounts to the 
following: Find the best unbroken fragment of text from a document that answers some 
domain-specific question. If the domain consists of a collection of seminar announcements, 

11 
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for example, we may be interested in the location of the seminar described in a given an- 
nouncement. I call the question to be answered afield; the fragment that answers it I call 
afield instance. Thus, one instantiation of the location field in our seminar announcement 
domain might be "Wean 5409" (i.e., a text fragment giving a room number). An infor- 
mation extraction task typically involves several fields (e.g., the location, speaker, and start 
time of a seminar); I regard each as a separate learning problem. 

2.1.1 Formal Framework 

Central to any information extraction effort is the individual document. Let D represent 
such a document. We can view D as a sequence of terms, t\, ■ ■ ■, tn, where a term is either 
a word or a unit of punctuation. 

Afield is a function, T{D) = {(iiji), (z2,32), • • •}> mapping a document to a set of 
fragments from the document. The variables ik and jk stand for the indexes of the left and 
right boundary terms of fragment k. Note that some fields are not instantiated in every 
document (not every seminar announcement fists a location). In this case, T returns the 
empty set. I will usually assume that all fragments in T{D) refer to the same entity, so that 
it is sufficient to identify any member of T(p). 

Given the extension of T for some set of training documents (i.e., given documents 
annotated to identify field instances), the goal of a learner is to find a function T that 
approximates T as well as possible and generalizes to novel documents. 

As an alternative to approximating T directly, we can construct learners to model a 
function, G(D, i,j) = x, which maps a document sub-sequence to a real number repre- 
senting the system's confidence that a text fragment (i, j) is a field instance. Given a 
hypothesis in this form, implementing T may involve as little as iterating over a document, 
presenting Q with fragments of appropriate size, and picking the fragment for which Q's 
output is highest. In practice, we also want to use Q to reject some fragments outright. We 
can accomplish this by associating a threshold with Q. A learner is said to have given no 
prediction if its output falls below this threshold for all fragments in a document. 

2.1.2 Discussion 

All of the learners described in the following chapters are constructed to learn a function 
in the form of Q. In other words, hypotheses concern fragments, rather than documents. 
Given a test fragment, a learner must either return no (reject it) or a confidence. Learning a 
function in the form of Q, as opposed to modeling T directly, has a number of advantages: 

• It finesses the search problem inherent in T\ rather than attempt to locate a field 
instance, a learner is simply presented with all reasonable alternatives and chooses 
among them. 

• Q is closer in form than T to the kinds of functions implemented by conventional 
classification algorithms, and a number of approaches standard in related disciplines 
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can be brought to bear. For example, the text delimited by (i, j) can be regarded as a 
kind of miniature document, and a statistical document classification technique can 
be used to locate field instances. 

• If a learner outputs a real number, it is possible to choose a threshold below which to 
disregard predictions, i.e., to trade recall for precision. More interesting, its reliability 
as a function of confidence can be modeled. A later chapter explores the use of such 
models for improved performance in a multistrategy setting. 

2.2   Document Views 

In the previous section, we formalized the notion of a document as a sequence of terms. 
While this formalization is necessary in order to define the learning task, it is only one of 
many ways to look at a document, one of many document views. A document is a "natural" 
object that has many different kinds of structure, some of which must be ignored in any 
given representation. Consequently, this thesis argues that multiple representations are 
better than any single representation. 

What I am calling a view amounts to a category of structural information. Taking a 
view involves recognizing a specific kind of structure which is present only implicitly in 
the document. In this section, I identify some of the views I believe are relevant to the 
problem of information extraction. 

2.2.1 The Terms View 

The terms view regards a document as a sequence of terms, as formalized in the previous 
section. The bag-of-words model, which ignores ordering, is basically a weakening of this 
view. 

It may seem counter-intuitive to refer to the canonical document representation as a 
view. Nevertheless, because it groups together more primitive document elements (char- 
acters), it performs the same function as more sophisticated views—it provides structure. 
Although two of the learning approaches described in later chapters assume this view, it is 
a rather impoverished document representation for the purpose of information extraction. 

Figure 2.1 shows an electronic posting announcing an upcoming seminar in a university 
computer science department. Figure 2.2 depicts a terms view of the same document. Every 
whitespace-separated token is an element in the sequence that constitutes the document. 
Note how the structure we have removed in assuming the terms view makes the problem of 
identifying the seminar speaker or start time more difficult. 

2.2.2 The Mark-Up View 

The mark-up view of a document regards it as a sequence of terms interleaved with meta- 
terms, which provide role information about the terms. HTML contains explicit meta-terms 



14 CHAPTER 2.  THE PROBLEM SPACE 

<0.21.3.95.14.12.11.ed47+@andrew.emu.edu.0> 
Type: cmu.andrew.official.emu-news 
Topic: ECE Seminar 
Dates: 30-Mar-95 
Time: 4:00 - 5:00 PM 
Place: Scaife Hall Auditorium 
PostedBy: Edmund J. Delaney on 21-Mar-95 at 14:12 from andrew.cmu.edu 
Abstract: 

COMPUTERIZED TESTING AND SIMULATION OF CONCRETE CONSTRUCTION 

FARRO F. RADJY, PH.D. 

President and Founder 
Digital Site Systems, Inc. 

Pittsburgh, PA 

DATE:  Thursday, March 30, 1995 
TIME:  4:00 - 5:00 P.M. 
PLACE:  Scaife Hall Auditorium 

REFRESHMENTS at 3:45 P.M. 

FIGURE 2.1: A seminar announcement. 

< 0 .  21 .  3 .  95 .  14 .  12 .  11 .  ed47 + dandrew .  emu .  edu .  0 > type :  emu 

andrew .  official .  emu - news topic :  ece seminar dates :  30 - mar - 95 time : 

4 :  00 - 5 :  00 pm place :  scaife hall auditorium postedby :  edmund j .  delaney on 

21 - mar - 95 at 14 :  12 from andrew .  emu .  edu abstract :  computerized testing and 

simulation of concrete construction farro f .  radjy , ph .  d .  president and founder 

digital site systems , inc .  Pittsburgh , pa date :  thursday , march 3 0 , 1995 time :  4 

:  00 - 5 :  00 p .  m .  place :  scaife hall auditorium refreshments at 3 :  45 p .  m . 

FIGURE 2.2: A seminar announcement as a sequence of literal terms. 

(tags), but even ASCII contains "control" characters, such as tabs and carriage returns, the 
purpose of which is to partition terms. While the terms view is a uni-dimensional inter- 
pretation of a document, mark-up is multi-dimensional. Each tag represents an orthogonal 
dimension along which tokens can be described. A tag can be viewed as a Boolean function 
defined over tokens. In HTML, for example, we might define the title function to return 
true for any tokens occurring within the scope ofa<title> tag. Still another way to re- 
gard mark-up is as the instantiation of a number of relations; the tokens occurring together 
in a title field all participate in a relation that distinguishes them from other tokens in the 
document. 

Figure 2.3 shows a World Wide Web home page, and Figure 2.4 depicts a mark-up view 
of the same page. In this figure, all non-whitespace characters not belonging to some mark- 
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<html> 
<head> 
<title>Dayne Freitag's Home Page</title> 
</head> 

<body bgcolor="#FFFFFF"> 

<centerxh2>Dayne Freitag</h2> 
<hr> 
<h3xfont   face="Helvetica">Contents</font></h3></center> 

<center> 

<table> 

<trxtd> 
<font  face="Courier"> 
Introduction  
<a href ="intro.html"xi>ihtro.html</ix/a> 
</font> 

FIGURE 2.3: Part of a personal home page from the World Wide Web. 

<html> 
<head> 
<title>*****  *********  ****   ****</title> 
</head> 

<body  bgcolor="#FFFFFF"> 

<centerxh2>*****  *******</h2> 
<hr> 
<h3xfont  face="Helvetica">********</fontx/h3x/center> 

<center> 

<table> 

<trxtd> 
<font  face="Courier"> 
************************************************* 
<a href="intro.html"><i>**********</i></a> 
</font> 

FIGURE 2.4: A mark-up view of the excerpt shown in Figure 2.3, in which non-markup, 
non-whitespace characters have been replaced by asterisks. 
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******************************************* 
***** **************************** 
****** ***    ******* 
****** ********* 
***** ****    *    ****    ** 
****** ******    ****    ********** 
********* ******    **    *******    **    *********    **    *****    ****    ************** 
********* 

************    *******    ***    **********    **    ********    ************ 

*****    **    ******    ***** 

*********    ***    ******* 
*******    ****    ********    **** 

***********    ** 

*****        *********    *****    ***    **** 
*****        ****    *    ****    **** 
******       ******    ****    ********** 

************    **    ****    **** 

*********************** 

FIGURE 2.5: A layout view of the document shown in Figure 2.1, in which non-whitespace 
characters have been replaced by asterisks. 

up element have been replaced by asterisks. With a little experience with similar pages, a 
human can identify the name of the home page's owner, with reasonable confidence, from 
the mark-up view alone. 

2.2.3    The Layout View 

The layout view of a document regards it as a two-dimensional arrangement and sizing 
of terms. This view can be regarded as an interpretation of the mark-up view by some 
application. 

In general, many important textual objects can be discerned only at this level, such as 
paragraphs, headlines, tables, mail headers, signatures, etc. Such objects are frequently 
employed to separate a field from surrounding text, or to associate it with surrounding text 
in a special way. Textual tables, for example, imply something about the text fragments they 
comprise; columns typically define an attribute over multiple objects, while rows associate 
the various attributes of a single object. 

Figure 2.5 depicts a layout view of the document shown in Figure 2.1. In this figure, 
all non-whitespace characters have been replaced by asterisks. While this view typically 
does not provide enough information by itself to identify field instances, it is nevertheless 
a useful source of information. Suppose, for example, we wanted to know for what parts 
of the document shown in Figure 2.5 a traditional linguistic analysis would be feasible. An 
experienced eye can quickly identify regions where this should not be attempted, such as 
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<9.99.9.99.99.99.99.aa99+@aaaaaa.aaa.aaa.9> 
Aaaa: aaa.aaaaaa.aaaaaaaa.aaa-aaaa 
Aaaaa: AAA Aaaaaaa 
Aaaaa: 99-Aaa-99 
Aaaa: 9:99 - 9:99 AA 
Aaaaa: Aaaaaa Aaaa Aaaaaaaaaa 
AaaaaaAa: Aaaaaa A. Aaaaaaa aa 99-Aaa-99 aa 99:99 aaaa aaaaaa.aaa.aaa 
Aaaaaaaa: 

AAAAAAAAAAAA AAAAAAA AAA AAAAAAAAAA AA AAAAAAAA AAAAAAAAAAAA 

AAAAA A. AAAAA, AA.A. 

Aaaaaaaaa aaa Aaaaaaa 
Aaaaaaa Aaaa Aaaaaaa, Aaa. 

Aaaaaaaaaa, AA 

AAAA:  Aaaaaaaa, Aaaaa 99, 9999 
AAAA:  9:99 - 9:99 A.A. 
AAAAA:  Aaaaaa Aaaa Aaaaaaaaaa 

AAAAAAAAAAAA aa 9:99 A.A. 

FIGURE 2.6: A layout view augmented with typographic information. 

the mail header and centered text. What is more, a little more experience with documents 
from this domain should make it possible to make good approximate guesses about the 
location of field instances, such as the seminar's speaker. 

2.2.4   The Typographic View 

The typographic view amounts to a collection of simple functions defined over the tokens in 
a document. These functions reflect membership of the characters constituting a token in a 
number of character classes. These classes, such as numeric, punctuation, and upper-case, 
do not serve to contain meaning so much as organize the text in a way that makes it more 
readily digestible. This view is a powerful source of information for certain information 
extraction problems. Because of this, and because it is easy to analyze text for typographic 
information, two learners we will describe in later chapters make extensive use of this view. 

Figure 2.6 shows the layout view augmented with typographic information. In this fig- 
ure, punctuation has been passed through unaltered, numeric characters have been replaced 
with 9, lower-case alphabetic characters with a, and upper-case characters with A. To a 
trained eye, it becomes possible in this view to locate instances of most of the fields with 
high reliability. 
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+ A +    + jp + 

| I Mp--+      + A + 
I I I        I I 

computerized.a [testing] [and] simulation.n of concrete.a construction.n 

FIGURE 2.7: A syntactic view of the title of the seminar announced in Figure 2.1. 

entity 
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u u 

device investigation 
u u 

machine research 
u u 

computer experiment 

nogu 
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idea 
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concept 
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real 
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activity 
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creation 
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creating from raw materials 
factual--' 

computerized testing and simulation of concrete construction 

FIGURE 2.8: A semantics view, produced using Wordnet, of the title of the seminar an- 
nounced in Figure 2.1. 

2.2.5    The Linguistic View 

A linguistic view of a document regards it as a syntactically and semantically structured 
object. Document terms participate in a set of syntactic relations that bind them together in 
graphical structures. Each content word possesses one or more semantic senses, only one 
of which is in effect in a given context. 

Our understanding of how linguistic structure is recovered from a document is incom- 
plete, as many open questions in NLP serve to demonstrate. This, combined with the inher- 
ently multi-dimensional nature of linguistic structure, makes it hard to depict a linguistic 
view in graphical form. Figures 2.7 and 2.8 attempt to present the syntactic and semantic 
structure, respectively, of the seminar title from Figure 2.1. In Figure 2.7 syntax consists 
of a set of binary relations or "links," as produced using the link grammar parser (Sleator 
and Temperley, 1993). Each relation binds together terms in a sentence according to a 
particular syntactic role. In Figure 2.8 the U symbol stands for the is-a relation, which in 
Wordnet is restricted to nouns and verbs. Adjectives and adverbs, in contrast, are organized 
into clusters of related meanings. Note that none of the text in this seminar announcement 
is perfectly suited for linguistic processing, since it contains no complete sentences and 
resorts to non-linguistic devices to relay information. Thus, it argues eloquently for the use 
of some of the other views when performing information extraction in such domains. 

Clearly, however, the linguistic view is the most powerful source of information for 
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extraction in many cases—if we can make effective use of it. Unfortunately, the very 
existence of information extraction as a discipline implies shortcomings in current NLP 
methods. 

2.3   Evaluating Performance 

The problem of evaluating the performance of an information extraction system is surpris- 
ingly subtle. Here, I outline the space of possible performance measures and define the 
metrics I use in this thesis. 

2.3.1 Unit of Performance 

For most problems I study, all field instances in a document D—all members of the set 
T(D)—refer to the same underlying entity. In a seminar announcement, for example, the 
start time, which is unique for a given seminar, may be listed several times. I call this 
the one-per-document (OPD) setting. The unit of performance for OPD problems is the 
individual document. The central question is: In looking for Field X, did Learner Y act 
appropriately on Document Z? This question is posed for each Document Z in the test set. 
For each document, for which the answer to this question is yes, the learner is credited with 
one correct response. 

In a few cases, I study problems for which we expect each field instance in a docu- 
ment to represent a distinct underlying entity. For example, Web pages describing research 
projects often list project members; if the object is to extract member names, then it is in- 
appropriate just to take a learner's top prediction. I call this the many-per-document (MPD) 
setting. For MPD problems, which are typically harder, I pose a different question: Did 
Prediction X made by Learner Y identify an instance of Field Z? In other words, the unit of 
performance for these problems is the individual prediction. 

In the discussion that follows, and through most of the thesis, I assume the OPD setting. 
Most of the considerations I bring up, however, apply to the MPD setting, as well. 

2.3.2 Document Outcomes 

Given a document and a set of predictions (fragment boundaries) from a learner, we can 
take the learner's most confident prediction as its official estimate. Call this prediction P 
and let P — nil represent non-prediction. There are four possible outcomes: 

Correct A field instance is correctly identified (P € T(D)). 

Wrong The best prediction is not a field instance (P £ T{D) A F{D) ^ 0). 

Spurious The system predicts for a document in which the field is not instantiated 
(P ± nil A T(D) = 0). 
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No prediction The system makes no prediction (P = nil). 

The learner's precision is defined as: 

correct 
Precision = 

correct + wrong + spurious 

In other words, precision is the fraction of correct document outcomes divided by the num- 
ber of all files for which the system makes some prediction. 

Note that this is not the only reasonable performance metric. There are at least two 
variations which make sense, depending on the criteria imposed by the application we 
have in mind. For example, if we are mainly interested in ensuring that when a field is 
instantiated it is retrieved (i.e., we emphasize recall), then we may choose not to count 
spurious predictions as errors. This amounts to treating documents in which a field is not 
instantiated as irrelevant. 

We may also want to count as errors those cases for which an extraction was possible 
but the learner made no prediction, as is commonly done in the MUC evaluations. I do not 
do this for two related reasons: 

• I assume that the learning approaches studied in this thesis will serve as components 
of a larger system. A learner may issue predictions on only a small fraction of doc- 
uments but with high reliability. If we count its failure to predict as errors, we are 
obscuring its usefulness to a larger system that treats the learner's predictions as one 
among many sources of information. 

• I want to investigate precision/recall behaviors (see below). This requires that non- 
predictions (or predictions below some threshold) be treated as irrelevant in measur- 
ing precision. 

2.3.3   Fragment Outcomes 

The document outcome depends on a learner's most confident prediction, which takes the 
form of a fragment from the document. Thus, how we determine whether this prediction is 
correct is important. There are three basic criteria we might use: 

Exact The predicted instance matches exactly an actual instance. 

Contain The predicted instance strictly contains an actual instance, and at most k neigh- 
boring tokens. 

Overlap The predicted instance overlaps an actual instance. 

Each of these criteria can be useful, depending on the situation, and it can be illuminating to 
observe how performance varies with changing criteria. The overlap criterion shows how 
good a method is at approximately identifying the location of instances, without penalizing 
for misidentified boundaries. The contain criterion is potentially useful for showing how 
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well an approach will serve in some applications, especially those involving end users, who 
can easily filter out erroneous text included from an instance's context. Some learners show 
considerable variability under changing criteria, while others do not. 

Of course, the only criterion that is useful for all possible applications is the exact 
criterion. When the criterion is not explicitly stated, performance numbers assume this 
criterion. 

2.3.4   Precision and Recall 

The precision metric defined above does not count documents for which a learner offers no 
prediction. An alternative metric might count as errors those documents in which a field 
is instantiated for which a learner makes no prediction. This metric would have the effect 
of making a reticent learner look bad, when in fact it might be performing quite well on a 
subset of the testing documents. Instead, I account for this failure to predict by means of 
the complementary metric (which, like precision, is also standard in information retrieval): 

„ correct 
Recall 

\{D\T{D) ± 0}| 

or the number of correct predictions divided by the total number of documents that contain 
at least one field instance. Wherever a precision number is given, a corresponding recall 
number will be included. It is important to consider both numbers when comparing results. 

A learner responding to only a few documents typically chooses those documents for 
which its bias is best suited, those documents that are "easiest" for it. Such a learner will 
generally achieve better precision than a learner that offers predictions for all documents, 
easy and hard. In practice, therefore, there is often an inverse relation between recall and 
precision. Measures taken to afford higher recall often result in lower precision, and vice 
versa. 

Although the notion of not predicting is built into some learners (e.g., a rule learner 
may have no rules that match a particular document), so that they naturally do not issue a 
prediction for every document, it is always possible to make a learner less responsive by 
raising its confidence threshold. Consequently, it is possible to turn a high-recall learner 
into a low-recall one, either for the purpose of achieving a desired precision level, or of 
comparing it with other learners at a given recall level. 

A precision/recall graph depicts the effect of manipulating the confidence threshold 
in this way. Figure 2.9 shows one such graph. To generate the graph for a learner, all 
of its predictions (each prediction that was highest for some test document) are sorted in 
non-increasing order by confidence. Each point on the horizontal axis corresponds to some 
fraction of these predictions. For example, 0.5 on this axis represents the top 50% of 
predictions, according to confidence. The vertical value at this point shows the precision 
of these predictions. By looking at such a graph, we may see that a learner with mediocre 
precision at nearly 100% recall actually performs perfectly at 90% recall. To judge such 
a learner based on its full-recall performance would be a mistake, since by throwing out 
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FIGURE 2.9: A precision/recall graph. 

a small fraction of its correct predictions we can put it to good use. In general, as in 
Figure 2.9, we expect to see a more or less smooth decline in precision with increased 
recall. How well a particular plot fits this expectation tells us something about how well a 
learner's confidence correlates with the reliability of its predictions. 

In lieu of precision/recall graphs, I sometimes present results in the form of tables 
listing performance at various fixed recall levels. Even though such tables do not give a 
comprehensive picture of a learner's precision/recall behavior, they at least allow us to ex- 
amine a learner's precision on those documents for which it is most confident. Another 
advantage of such tables is that they make it convenient to use error margins. In the typical 
machine learning setting, a single measure—usually accuracy—is used to compare two or 
more learners: This number is typically the result of N classification attempts, where N 
is fixed for all learners. It is standard practice, in such a case, to present error margins, so 
the significance of a learner's achievement can be assessed. Here, in contrast, we are using 
two inter-dependent metrics—precision and recall—and the inclusion of error margins ap- 
pears less useful. Just because one learner reaches higher precision than another does not 
necessarily make it better, because the corresponding recall number may be much lower. 
In such a case it does not help to know that the learner's better precision is statistically 
significant. In contrast, if two learners are compared at a fixed recall level, then a single 
statistic decides the outcome, and error margins make more sense. My practice, therefore, 
is to present error margins only when comparing learners at a fixed recall level.1 All error 
margins in this thesis represent 95% confidence. 

xNote that, even though the recall level is fixed, the comparison is not based on the same number of 
tests—unless the learners also achieve the same precision! 
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For the purpose of comparing learners, it can be awkward to examine two performance 
numbers for each learner. The F-measure (van Rijsbergen, 1979), as used in informa- 
tion retrieval, provides a method for combining precision (P) and recall (R) into a single 
summary number: 

(ß2 + 1.0)PR 
(ß2P) + R 

The parameter ß determines how much to favor recall over precision. It is typical for 
researchers in information extraction to report the Fl score of a system (ß = 1), which 
weights precision and recall equally. Although it can be difficult to say what an Fl score 
represents in operational terms, the single performance number allows a convenient com- 
parison of information extraction systems. I find it most illuminating to present the peak 
Fl, the Fl score of that point on the precision/recall curve for which it is maximized. The 
Fl score of the rightmost point in Figure 2.9 is about 50 (36% precision at about 82% 
recall). The best Fl score on this curve, however, is at 70% recall, where an Fl score of 
69 is reached (69% precision). Because this learner is optimized for recall, it makes many 
spurious low-confidence predictions. To use its point of highest recall in a presentation of 
Fl scores would obscure its strengths. 

To compute peak Fl, I the precision/recall curve of a learner is sampled at 1% intervals. 
At each such point, the Fl score is computed. The highest of this collection of Fl scores 
is presented. As with precision, it is interesting to ask when there is a clear winner among 
several competing methods. Throughout this thesis, therefore, in tables comparing the peak 
Fl scores returned by multiple learners, if a score is presented in bold face, it is the best 
score in statistical terms— the single best score, such that its improvement over the next 
best score is judged statistically significant with 95% confidence. The scores shown in this 
thesis are always the result of multiple independent runs, and in each such run the training 
and testing sets are the same for all learners. To make the judgment of statistical separation, 
therefore, a "paired t-test" is used. For each run, the peak Fl score is determined for the 
best learner (Learner A) and next-best learner (Learner B)—as shown by the complete 
averaged results—and the difference between the two scores calculated. If a t-test over 
these differences supports the hypothesis that the difference in peak Fl between Learner 
A and Learner B is greater than 0 with 95% confidence, then Learner A's score appears in 
bold face. 

2.3.5   Problem Difficulty 

Information extraction is a challenging problem. On many of the individual extraction tasks 
described in the thesis, precision and recall of even the best learners is well below 1.0, but 
in interpreting such results it is important to keep in mind what learners are being asked to 
do. Confronted with a sequence of tokens, a learner must select a sub-sequence. In most 
cases, if the fragment it selects differs from the "right" answer in any way—if, for example, 
it includes one token too many—its selection is counted as an error. Often, depending on 
the task, there is only a single fragment that is considered correct; usually, there are five or 
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fewer. Thus, precision and recall results that are less than perfect must be weighed against 
the large number of fragments that might be selected inappropriately. 

Information retrieval provides a measure-^/aZ/owJ-of the degree to which a system's 
performance is degraded by the availability of a large number of irrelevant documents. If 
Irrelevant is the total number of irrelevant documents, and FalsePos is the number of these 
which a system inappropriately labels relevant, then 

Fallout = FalsePos / Irrelevant 

measures the tendency of a system to be led astray by irrelevant documents. If we say 
that field instances are relevant objects, and all other fragments of appropriate size—any 
fragment containing no fewer tokens than the smallest training instance, and no more tokens 
than the largest—constitute the set of irrelevant objects, then we have one measure of the 
degree to which a system successfully copes with the inherent difficulty of the extraction 
problem. 

By this measure all learners described in this thesis do quite well. Even at maximum 
recall, when precision is lowest, no learner suffers more than 1% fallout. Because fallout 
numbers are consistently so small, and because in a comparison of learners fallout does not 
lead to conclusions any different than those supported by precision, I do not present fallout 
as part of the experimental results. I mention it here in order to place less-than-perfect 
precision/recall results in persective. 

Another way to appreciate the difficulty of an extraction task is to measure the perfor- 
mance of a strawman algorithm. For each task, Appendix A shows, among other things, the 
performance of an algorithm that issues random guesses. The guessing game is strongly 
biased in the strawman's favor in the following way: For each test document, the strawman 
is "told" how many field instances it contains, and for each such instance, it is allowed to 
select, at random, some fragment of the same length. On one-instance-per-document tasks 
(all but two of the tasks studied here), if any of the strawman's selections matches a field 
instance, its performance is counted as correct. Its performance is then measured according 
to the same criteria as that used for the other algorithms.2 

Strawman accuracy ranges from about 0.5% to almost 8%, depending on the task, but 
for most problems it is close to 1%. The problems on which the strawman scores much 
higher than 1% are those in which documents tend to contain many instances of a field; be- 
cause the strawman is allowed to issue one prediction for each instance, the likelihood that 
any of its predictions will match a field instance is higher with such documents. Notwith- 
standing the favorable circumstances under which the strawman is tested, the performance 
of even the least successful learner is well above that of the strawman on most problems. It 
is clear, therefore, that learning, in whatever form, is making substantial inroads into some 
difficult problems. 

2Note that because it always issues exactly the same number of predictions as there are field instances in 
a test document, its precision, recall, and Fl are always the same number—what Appendix A calls Accuracy 
to avoid confusion. 
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2.4   Domains 

Three document collections and four information extraction problem domains formed the 
basis of the individual extraction tasks addressed in this thesis. The three collections from 
which documents were drawn differ widely in terms of the purpose and structuredness of 
individual documents. 

The seminar announcement collection consists of 485 electronic bulletin board postings 
distributed in the local environment at Carnegie Mellon University. The purpose of each 
document in this collection is to announce or relate details of an upcoming talk or semi- 
nar. Announcements follow no prescribed pattern; documents are free-form Usenet-style 
postings. I annotated these documents for four fields: speaker, the name of a seminar's 
speaker; location, the location (i.e., room and number) of the seminar; stime, the start time; 
and etime, the end time. 

The acquisitions collection consists of 600 documents belonging to the "acquisition" 
class in the Reuters corpus (Lewis, 1992). These are newswire articles that describe a 
corporate merger or acquisition at some stage of completion. I defined a total of ten fields 
for this collection: 

• acquired the official name of the company or a short description of the resource in 
the process of being acquired 

• purchaser the official name of the purchaser 

• seller the official name of the seller 

• acqabr the short form of acquired, as typically used in the body of the article (e.g., 
"IBM" for "International Business Machines Inc") 

• purchabr the short form of the purchaser 

• sellerabr the short form of the seller 

• dlramt the amount paid for the acquisition 

• status a short phrase indicating the status of negotiations 

• acqloc the geographical location of acquired 

• acqbus the business of acquired (e.g., "bank" or "software for home entertainment") 

The university Web page collection is a sample of pages from a large collection of uni- 
versity pages assembled by the World Wide Knowledge Base project (WebKB) (Craven et 
al, 1998). As part of an effort to classify Web pages automatically, WebKB manually 
assigned each of several thousand pages downloaded from four major university computer 
science departments to one of six classes: student, faculty, course, research project, de- 
partmental home page, and "other." From this collection I created two sub-domains, one 
consisting of 101 course pages, the other of 96 research project pages. The course pages 
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were tagged for three fields: crsNumber, the official number of a course, as assigned by 
the university (e.g., "CS 534"); crsTitle, the official title of the course; and crslnst, the 
names of course instructors and teaching assistants. The project pages were tagged for 
two fields: projTitle, the title of the research project; and projMember, the names of the 
project's members and alumni. 

Additional details on these three collections can be found in Appendix A. Excerpts 
from sample documents are available in Appendix B. 

2.5    MUC 

As noted, I use the term "information extraction" in a more restricted sense than usual. 
As a discipline, information extraction is as old as the Message Understanding Conference 
(MUC) (Def, 1995), the forum that defined the problem and until recently set the research 
agenda for it. Lately, however, the idea of information extraction, as a generic term to 
cover all sorts of text mining, has awakened interest in the machine learning community. 
To avoid confusion, therefore, I will sketch the problem as it is understood by the MUC 
community and point to the salient differences in definition and evaluation between MUC- 
style information extraction and my work. 

The essential components of a MUC-style information extraction problem are a collec- 
tion of prose documents from some semantically coherent domain and a set of templates 
which define how documents are to be summarized. A MUC template is a kind of skeletal 
summary, providing the structure but omitting the details, which are to be found in the indi- 
vidual document. The simplest kind of template is a relational record schema; each item in 
an instantiated record is a text fragment from the corresponding document. In our seminar 
announcement example, we might have a template with slots for the seminar title, speaker, 
location, start time, and end time. 

How documents are to be summarized is a question of domain definition. While a 
single relational template like this is adequate to convey most of the essential information 
in many domains, it almost always excludes some information of potential interest. Thus, 
MUC templates, especially those from later conferences, tend to have more complicated 
structure. Templates may be nested (i.e., the slot of a template may take another template 
as its value), or there may be several templates from which to choose, depending on the 
type of document encountered. In addition, MUC domains include irrelevant documents 
which a correctly behaving extraction system must discard. A template slot may be filled 
with a lower-level template, a set of strings from the text, a single string, or an arbitrary 
categorical value that depends on the text in some way (a so-called "set fill"). 

In cases where elaborate representations (nested templates, set fills) are required of a 
system, task difficulty may approach that of full natural language understanding. In gen- 
eral, the challenges facing natural language understanding cannot be circumvented in in- 
formation extraction. Some semantic information and discourse-level analysis is typically 
required. To this are also added sub-problems unique to information extraction, such as 
slot filling and template merging. 
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FIGURE 2.10:   The generic information extraction processing pipeline, according to 
Cardie. 

Figure 2.10 shows Cardie's conception of the flow of control in a generic information 
extraction system (Cardie, 1997). A document is initially decomposed into a sequence 
of terms or tokens, which are subjected to syntactic and superficial semantic analysis. 
From this analysis, "Sentence Analysis" generates some representation of sentential struc- 
tures. It is typical of many information extraction systems that these structures produce 
sentence fragments, rather than complete sentences. Many information extraction projects 
have found full sentence parses inefficient, noisy, and unnecessary for most information 
extraction problems. 

"Extraction" is the process of looking through these sentential structures for text to fill 
constituent slots in the answer templates. When MUC researchers speak of using machine 
learning to perform information extraction, they usually are referring to this task. Gener- 
ally, extraction produces multiple sub-templates, some of which share the same underlying 
entities, so must be combined to generate the correct answer template. The process of 
determining which of these sub-templates co-refer and how they should be combined is 
"Merging." Finally, "Template Generation" assembles intermediate results into the official 
form stipulated in the task definition. 

The problem addressed here relates to MUC in the following ways: 

• This thesis is concerned with methods that work in non-traditional domains, with 
documents consisting of grammatically ill-formed text, such as Usenet posts and 
Web pages. MUC documents consist of well-formed prose, and linguistic analysis is 
assumed to be necessary. 

• Each field in a template is considered in isolation. The MUC setting groups fields 
into templates for both definition and evaluation. As noted, however, this special 
focus on individual fields (slots) is also often called "information extraction." 

• This thesis does not attempt to address any of the auxiliary tasks, such as relevance 
detection and discourse analysis. 

• In most cases, only only those problems are studied in which all field instances in 
a document refer to the same underlying entity. In general, of course, a field may 
have multiple, semantically distinct instantiations in a file. For example, a Web page 
describing a computer science research project at a university usually lists the names 
of all members (i.e., all instances of the project-member field). 

The performance measures I discuss in this chapter reflect some of these commitments. 
In contrast with MUC, my metrics treat the individual document as the unit of performance. 



28 CHAPTER 2. THE PROBLEM SPACE 

In MUC, performance is measured in terms of individual slots in the key templates. A 
single correct answer corresponds to a response slot of the right type being filled with the 
appropriate text. Performance is then measured as an average over all slots, of any type, 
contained in the key. 

How key and response templates are aligned, and what constitutes a single correct ex- 
traction, is a matter for complicated scoring software. Half credit is awarded for slots which 
match "partially." Otherwise, both unfilled slots and spurious slot fills are counted as errors. 

The MUC scoring regime is unsuitable for the experiments described in this thesis for 
several reasons: 

• Aligning templates and accounting for partial matches in MUC fashion is domain 
specific. The exact methods used at MUC are not described in published proceedings. 

• Averaging performance over a diverse set of fields (slots), rather than proofing the 
performance on each field individually, obscures the sort of information needed to 
understand the behavior of individual learners. 

• The MUC scoring scheme is too complicated to permit an investigation of preci- 
sion/recall behavior. 



Chapter 3 

Term-Space Learning for Information 
Extraction 

In term-space learning a document is regarded, in a case-insensitive fashion, as 
a sequence of terms. All other information—typography, layout, linguistics— 
is ignored. This chapter describes two term-space learners, Rote and Bayes. 
Rote memorizes field instances verbatim and only issues predictions when 
test fragments match previously seen instances verbatim. Bayes uses term- 
frequency statistics to estimate the likelihood that a novel fragment is a field in- 
stance. Experiments with the seminar announcements compare the two learn- 
ers. Rote shows very good precision in identifying instances of the location 
field while achieving surprisingly high recall. The performance of one variant 
of Bayeson stime and etime is close to perfect. Both learners fare worse on the 
speaker field, which is characterized by uncommon tokens and less Stereotypie 
context. Additional experiments with the acquisitions articles show that this 
is a more difficult domain. Nevertheless, the term-space learners show good 
performance on a few of the acquisitions fields. 

In this chapter, I consider learning approaches that take only the terms view of a 
document—term-space learners. A term is as defined in the previous chapter: an unin- 
terrupted sequence of alpha-numeric characters or a single punctuation character. Any 
learner that assumes no information beyond that available in such a representation, I call a 
term-space learner. 

Term-space learners dispense with much of the information available in a document. 
This has a number of advantages: 

• It results in less domain dependence. Because term-space learners make mini- 
mal assumptions, they are applicable to the widest variety of information extraction 
problems. Consider, in contrast, an approach that requires a syntactic pre-processing 
step in order to function. The applicability of such an approach is undermined when 
documents do not consist of well-formed sentences, as with many Web pages. 

29 
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• It is very efficient. Term-space learners require less processing than approaches that 
seek to exploit more of the information in document. As a result, they finish much 
more quickly. 

• It sometimes yields the best performance. Sometimes the benefits brought by en- 
riching a representation or using a sophisticated learner are outweighed by the li- 
abilities of a larger hypothesis space. Some recent work in machine learning has 
shown that simple learners are at least competitive and sometimes better than more 
sophisticated ones (Holte, 1993; Domingos and Pazzani, 1996). 

• It provides useful information. Even if term-space approaches are not the best at a 
given task, they provide valuable information. All the approaches described in this 
thesis are intended as components in a larger information extraction system. Chap- 
ter 6 shows how term-space learners can contribute to better overall performance, 
even if their performance is not best on a given task. 

This chapter presents two term-space learners, Rote and BayeslDF. Experiments with 
the seminar announcement and acquisition domains provide clear evidence that term-space 
approaches are useful. 

3.1    Rote Learning 

Perhaps the simplest possible learning approach to the information extraction problem is 
to memorize field instances verbatim. Presented with a novel document, this approach 
simply matches text fragments against its "learned" dictionary, saying "field instance" to 
any matching fragments and rejecting all others. 

More generally, we can estimate the probability that the matched fragment is indeed 
a field instance. The dictionary learner I experiment with here, which I call Rote, does 
exactly this. For each text fragment in its dictionary, Rote counts the number of times it 
appears as a field instance (p) and the number of times it occurs overall (n). Its confidence 
in a prediction is then the value p/n, smoothed for overall frequency. Rote uses Laplace 
estimates under the assumption that this is a two-class problem, field instance and non-field 
instance. Thus, the actual confidence Rote assigns to a prediction is (p + l)/(n + 2). 

Rote's dictionary is constructed in two passes through the training corpus. In the first 
pass, the dictionary, which is initially empty, is populated with field instances. At the 
end of this pass, the dictionary contains all distinct instantiations of a field. In the second 
pass, all text in the training corpus, field and non-field, is scanned in search of fragments 
matching dictionary entries. Whenever such a match is found, two counts associated with 
its dictionary entry—the p and n mentioned in the previous paragraph—are updated. The 
n count is always incremented in such an event; the p count is incremented only if the 
fragment is tagged as a field instance. 

The dictionary, which is effectively a set, can be implemented using any data structure 
that can represent a set, such as a linear list or a hash table. Rote uses a discrimination 
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Fragment: <location>Wean Hall   4601</location> 

Pos: 3 
Total: 25 

Ö 

Pos: 43 
Total: 45 Pos: 6 

Total: 13 

Pos: 1 
Total: 1 

11 

Pos: 20 
Total: 20 

FIGURE 3.1: A hypothetical insertion of a seminar location instance into the discrimination 
net used to implement Rote's dictionary. 

1 Function Match(tree, index) 
2 Return Matchlnternal(tree, index, nil) 
3 End Function 
4 
5 Function Matchlnternal(tree, index, result) 
6 token = TokenAt(index) 
7 If Null(token)    /* Index is  out  of bounds  */ 
8 Return result 
9 End If 
10 node = FollowBranch(tree, token) 
11 If Null(node)     /* No branch found */ 
12 Return result 
13 Else If Terminal(node) And Better(node, result) 
14 result = node 
15 End If 
16 Return Matchlnternal(node, index + 1, result) 
17 End Function 

TABLE 3.1: Procedure for finding an entry in Rote's dictionary. 
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net, which is particularly suited to the multi-token nature of most field instances: Using 
this representation it is possible to halt consideration of a non-matching fragment when the 
first non-matching token is encountered. Figure 3.1 depicts an insertion into this net. Rect- 
angular boxes in the figure represent terminal nodes, while circles represent non-terminal 
nodes. The dashed arrows show where the insertion is made for the phrase listed at the top 
of the figure.1 Table 3.1 presents a pseudocode version of the matching procedure that is 
used both in the second training pass and during testing. The variable tree holds a pointer 
to the discrimination net that implements Rote's dictionary; any entry returned will match 
a fragment beginning at the token indicated by the variable index. If no matching entry is 
found, this procedure returns nil. Given multiple matching entries, it returns the best one, 
as determined by the function Better (). This function uses the statistics stored in the 
terminal nodes (as in Figure 3.1) to decide which of two nodes is better. 

As simple as Rote is, it nevertheless is surprisingly applicable in a wide variety of 
domains. Of course, its applicability depends on the nature of the task, but at the very least, 
a Rote prediction, especially a high-confidence one, is a valuable piece of information. 
Because of the simplicity of the assumptions that go into a prediction, prediction confidence 
correlates well with actual probability of correctness. 

One problem with Rote, of course, is that it cannot generalize to recognize novel in- 
stances. Applying a rote learner to the problem of document filtering, say, would involve 
admitting a document as relevant only if a user had previously identified it as such. Of 
course, the nature of a typical information extraction task, and the fact that field instances 
are generally much shorter than full documents, makes rote learning a reasonable idea. 

Another problem with Rote is its insensitivity to context. The context in which a field 
instance appears presumably supplies some useful information. It is hard to imagine how 
Rote might be extended to exploit context in an effective way. We could elaborate the 
structure stored in Rote's dictionary to include k context tokens from either side of a field 
instance, but this would tend to counteract any benefit we realize through the statistics 
collected in the second training pass. Any variability in the context would result in our 
storing multiple entries where we would only store one in the context-insensitive version 
of Rote. The counts associated with these entries would be smaller and statistically less 
trustworthy that those associated with the corresponding context-insensitive entry. 

3.2   Naive Bayes 

In contrast with Rote, which must match a fragment verbatim in order to make a predic- 
tion, Bayes sums evidence provided by all tokens individually, including the tokens in a 
fragment's context. This section derives Bayes from Bayes' Rule and presents two modi- 
fications that appear to improve its performance. 

Rather than attempt to match complete phrases, it might make sense to treat each token 
in and around a candidate fragment as a separate source of information, and to make a 

^ote that a "terminal" node also can have children, since it is possible for one field instance to be the 
prefix of some separately occurring field instance (e.g., "5409 Wean" and "5409 Wean Hall"). 
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statistical estimate that combines multiple individual estimates. This would overcome the 
Hmitations ascribed to Rote above: 

• As long as previously unseen field instances share some of the same tokens as in- 
stances already observed, there is some possibility that a statistical approach will 
still recognize them. The previously unseen fragment "Wean 7220" might be iden- 
tified as a seminar location based solely on the strength of the association of the word 
"Wean" with seminar locations. 

• Incorporating estimates for tokens occurring in the text surrounding a fragment presents 
no difficulty. Contextual tokens contribute evidence in the same way tokens that are 
part of a fragment do. 

And there is ample precedent for such an approach in disciplines related to information 
extraction. In the discipline of document classification, for example so-called bag-of-words 
algorithms, which include Rocchio with TFTDF term weighting (Rocchio, 1971) and Naive 
Bayes (Lewis and Gale, 1994), are state of the art. The algorithm I will call Bayes is in 
fact adapted from Naive Bayes as used for document classification. 

3.2.1   Fragments as Hypotheses 

Bayes' Rule tells us how to update a hypothesis H in response to the evidence contained in 
some empirically obtained data D: 

In other words, the posterior probability that H is correct is proportional to the product of 
the prior probability Pv(H) and the probability of observing the data D, conditioned on 
H, PIL(D\H). In classification, where the object is to choose one of several competing hy- 
potheses Hi, the denominator Pv(D) is the same for all Hi and is typically disregarded; the 
hypothesis Hi that maximizes the product Pv(D\Hi) Pr(Hi) is chosen as the best classifi- 
cation according to Bayes' Rule. In order to apply Bayes' Rule to classification, therefore, 
two estimates are needed: Pv(D\Hi) and Pr(Hi), the conditional data likelihood and the 
prior. 

Consider now the problem of identifying the name of the speaker in a seminar an- 
nouncement. We can model this problem as a collection of competing hypotheses, where 
each hypothesis represents our belief that a particular fragment gives the speaker's name. 
In this case a hypothesis takes the form, "the text fragment starting at token position p and 
consisting of k tokens is the speaker." (Call this hypothesis HPtk.) In the case of a seminar 
announcement file, for example, if309,2 might represent our expectation that a speaker field 
consists of the 2 tokens starting with the 309th token. 

Given a document, a learner based on Bayes' Rule is confronted with a large number of 
competing hypotheses Hijk, one of which it will choose as most probable—whichever max- 
imizes the product Pr(D\HPtk) Pr(HPtk). What, then, corresponds to the terms Pr(D\HPtk) 
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FIGURE 3.2: A depiction of the histogram used by Bayes to estimate the position likeli- 
hood of test instances. 

and Pr(i7)? In the derivation that follows, D stands for the contents of the document. 
Pr{Hp^k), therefore, is our belief in a hypothesized fragment before we have actually ex- 
amined the contents of the document in which it occurs. Pr(D\HPyk) is the probability of 
seeing the contents of the document from the point of view of the fragment. 

3.2.2   Derivation of Bayes 

Given a document, in order to specify a hypothesis by this Bayes' Rule learner, which I call 
Bayes, two parameters must be set: position and length. The prior Pr(HP:k) comes from 
some distribution defined over these two parameters. The distribution used by Bayes is 
based on the positions and lengths of field instances as observed in the training documents. 
Bayes treats these two parameters as independent, modeling each separately. In Bayes, 
therefore, the prior belief in a hypothesis is: 

Pr(HPtk) = Pr(position = i) Pr(length = k) 

Bayes bases each of the constituent estimates on the training data. 

In a typical information extraction problem field instances are short and do not vary 
much in length. Thus, simply tabulating the number of times instances of length k are seen 
during training and dividing this number by the total number of training instances yields 
a good estimate for the length prior. Let n be the total number of field instances seen in a 
training set, and let L (k) represent the number of instances of length k. The length estimate 
used by Bayes is simply L(k)/n. 

In order to estimate the position prior, Bayes sorts training instances into n bins, based 
on their position, where n is much smaller than the typical document size. During testing, 
Bayes uses a frequency polygon drawn over these bin counts to estimate the position prior. 
Figure 3.2 depicts this graphically. Each training instance is sorted into the appropriate bin 
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by start position. The probability of seeing a test instance beginning at some position is 
calculated by interpolating between the midpoints of the two closest bins (the dotted line). 

Bayes bases its estimate of the conditional data likelihood (Pi(D\HPjk)) on the tokens 
it observes in and near the hypothesized fragment. Before Bayes is run, the user must set 
the parameter w, which specifies how many tokens on either side of a fragment to consider 
in making this estimate. Tokens farther away than w tokens from the beginning or end of a 
fragment are then disregarded. 

Each token occurring inside and up to w tokens away from the hypothesized instance 
contributes to the estimate of Pv(D\HPjk). Bayes assumes that each such contribution 
is independent of all the others. For each such token t, Bayes estimates the likelihood of 
seeing t at its particular position with respect to the fragment. Its estimate of the conditional 
data likelihood is a product of such individual token estimates: 

Pv(D\HPyk) = IJ PT(U\HPJC) 
p—w<i<p+k+w—l 

In practice, the probability Pr (ti\HPtk) is estimated in one of two ways, depending 
on whether ti occurs within the fragment or in its context. Let us posit a set of random 
variables, before3- and after3, where 1 < j < w. The variable before■ • will model the distri- 
bution of tokens observed in the jth position before any field instance in the training set. 
The variables after3 have the symmetric meaning; each such variable models the distribu- 
tion of tokens occurring in a position following field instances. The actual conditional data 
likelihood estimate returned by Bayes has the following form: 

w k w 

Pv(D\Hp,k) = [J[ Pv(beforej = Vi)][]I Pr(*« = U+j-iWli Rafterj = <p+*+;-i)] 
j=l j=\ j=l 

In contrast with before and after, each of which corresponds to a set of variables, in is 
a single variable representing the distribution of tokens occurring anywhere within a field 
instance. The reason for this difference is the variability of instance lengths. If the instances 
of a particular field tend to be three tokens long, but one or two training instances are 
observed that consist of four tokens, and if in-field estimates are handled in a position- 
dependent manner, then the statistics for the fourth position may be noisy because of the 
very low frequency of occurrence. In contrast, every field instance has w tokens occurring 
before and after it, so the each of the variables beforei and after\ can be modeled with 
relative reliability.2 

The probability Pr{before3- = ti) is estimated as the number of times ti occurred as 
the jth word before any training field instance, divided by the total number of training 
field instances. Similarly, Pr(in = ti) is estimated as the number of times ti occurred as 
a training field instance, divided by the total number of training field instance tokens. To 
compensate for low-frequency events, m-estimates are used as part of all such calculations 
(Cestnik, 1990). 

2 Bayes inserts placeholder tokens for field instances occurring near a document boundary. 
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1 Procedure BayesAccount(doc, fieldname) 
2 fbounds = FieldlnstanceBounds(doc, fieldname) 
3 For (firsti, lasti) in fbounds   /* for each  index pair */ 
4 
5 PositionAccount(firsti) /* For position prior */ 
6 LengthAccount(lasti - firsti + 1) /* For length prior */ 
7 
8 /* Update  in */ 
9 
10 For  i  =  firsti  to  lasti 
11 token = TokenAt(doc,   i) 
12 in{token}   =  in{token}   +  1 
13 End For 
14 
15 For  i   =   1   to  $w$ 
16 
17 /*   Update before  */ 
18 
19 tab  =  before[i] 
20 index  =   firsti   -   i 
21 token  =  TokenAt(doc,   index) 
22 tab{token}  =  tab(token)   +  1 
23 
24 /*  Update after  */ 
25 
26 tab = after[i] 
27 index = lasti + i 
28 token = TokenAt(doc, index) 
29 tab{token} = tab{token} + 1 
30 End For 
31 
32 End For 
33 
34 /* Update  all */ 
35 
36 For i = 0 to LastTokenlndex(doc) 
37 token = TokenAt(doc, i) 
38 all{token} = all{token} + 1 
39 End For 
40 End Procedure 

TABLE 3.2: The training procedure used by all Bayes variants. 
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1 Function BayesEstimate(doc, firsti, lasti) 
2 logprob = log(PositionPrior(firsti)) 
3 + log(LengthPrior(lasti - firsti + 1)) 
4 For i = 1 to $w$ 
5 tab = before[i] 
6 token = TokenAt(doc, firsti - i) 
7 count = tab{token} 
8 logprob = logprob + log(MEst(count, totalFIcount)) 
9 End For 
10 For i = firsti to lasti 
11 token = TokenAt(doc, i) 
12 count = in{token} 
13 logprob = logprob + log(MEst(count, totalFieldTokens)) 
14 End For 
15 For i = 1 to $w$ 
16 tab = after[i] 
17 token = TokenAt(doc, lasti + i) 
18 count = tab{token} 
19 logprob = logprob + log(MEst(count, totalFIcount)) 
20 End For 
21 Return logprob 
22 End Function 

TABLE 3.3: Bayes's estimating procedure for text fragments. 

Training is a matter of scanning the training corpus and building the various frequency 
tables needed for Bayes's estimates. Table 3.2 presents the training procedure for Bayes, 
as well as variants of the algorithm described below. The procedure works by side effect 
on the global variables in, before, after, and all.3 Both in and all represent hash 
tables mapping tokens to frequency counts; before and after are arrays of such tables. 
The function TokenAt (doc, i) (e.g., line 11) returns the token occurring at position i 
in the document, unless i is out of bounds, in which case it returns a placeholder. Note that, 
for the sake of clarity, this pseudocode depicts Bayes's training procedure as making two 
passes through a document, once to update in, before, and after, and once to update 
all. In fact, it is straightforward to perform all necessary accounting in a single pass. 

During testing, an estimate is produced for every fragment in a document of a size 
having non-zero probability (i.e., a size actually seen in training). Table 3.3 shows the 
estimating procedure for Bayes. The global variables totalFIcount (lines 8 and 19) 
and totalFieldTokens (line 13) hold the number of field instances and field instance 
tokens seen during training, respectively. The function MEst (num, den) (lines 8, 13, 
and 19) returns an m-estimate, where num represents the numerator, den the denominator 
of the desired ratio. The position and length prior estimates are returned by the functions 
PositionPrior (start index) (fine 2) and LengthPrior (length) (line 3), re- 
spectively. 

Table 3.4 shows a sample prediction for w = 4. Tokens listed above the phrase in the 
3The variable all is not used by Bayes, but by a variant described below. It is included here for conve- 

nience. 



38      CHAPTER 3. TERM-SPACE LEARNING FOR INFORMATION EXTRACTION 

Token Log Prob. Combined 
00 -1.89 

-4.98 

Data 
Likelihood 

PM -1.26 
Place -1.04 
: -0.79 
Baker -3.01 

-11.11 Hall -1.92 
Adamson -3.09 
Wing -3.09 
Host -2.53 

-12.37 : -0.96 
Hagen -4.44 
Schempf -4.44 

Position -5.31 Prior 
Length -3.02 

Posterior -36.79 

TABLE 3.4:   A sample Bayes fragment likelihood estimation for a location phrase 
("Baker  Hall  Adamson Wing") taken from the seminar announcement collection. 

Token column are those occurring before it in the text, while those below occur after. The 
estimate of -36.79 is quite high. 

Bayes discards all estimates that are below a threshold T, which is determined heuristi- 
cally, as follows: Initial training is followed by a second pass through the training collection 
during which all field instances are re-examined. Let P(f) be Bayes's estimate for some 
field instance /, and let F be the set of all instances in the collection. Bayes's prediction 
threshold is set to: 

T = aminP(/) 
f€F    yj J 

where a is a parameter set by the user in advance. If no fragment in a test document 
leads to an estimate above this threshold, Bayes declines to issue a prediction. Because 
Bayes produces its estimates as log probabilities (i.e., large negative numbers), increasing 
a causes Bayes to issue more predictions. 

3.2.3   Modifications 

Unless an extraction problem is characterized by field instances whose lengths do not vary 
much, we may encounter a problem with Bayes. Bayes's estimate is effectively a single 
large product of individual estimates. Because each token contributes an estimate, the 
number of terms in the product grows and shrinks with the size of the fragment under 
consideration. What is more, more terms also means more pessimistic estimates; therefore, 
longer fragments are to some extent handicapped in relation to shorter ones. 
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1 Function BayesLNEstimate(doc, firsti, lasti) 
2 logprob = log(PositionPrior(firsti)) 
3 + log(LengthPrior(lasti - firsti + 1)) 
4 For i = 1 to $w$ 
5 tab = before[i] 
6 token = TokenAt(doc, firsti - i) 
7 count = tab{token} 
8 logprob = logprob + log(MEst(count, totalFIcount)) 
9 End For 
10 probsum = 0 
11 probcount = 0 
12 For i = firsti to lasti 
13 token = TokenAt(doc, i) 
14 count = in{token} 
15 probsum = probsum + log(MEst(count, totalFieldTokens)) 
16 probcount = probcount + 1 
17 End For 
18 logprob = logprob + avgFIlength * probsum / probcount 
19 For i = 1 to $w$ 
20 tab = after [i] 
21 token = TokenAt(doc, lasti + i) 
22 count = tab{token} 
23 logprob = logprob + log(MEst(count, totalFIcount)) 
24 End For 
25 Return logprob 
26 End Function 

TABLE 3.5: BayesLN's estimating procedure for text fragments. 

BayesLN is a modification of Bayes that compensates for variations in length. Instead 
of a product, the estimate for in-field tokens in BayesLN is the mean of the individual 
token estimates multiplied by the mean length of training instances. Table 3.5 shows the 
procedure used by BayesLN to produce fragment estimates. The modification to Bayes 
occurs between line 10 and 18. Taking the mean for the in-field estimate ensures that 
two fragments of differing lengths receive a fair comparison. If just the mean were taken 
without any further adjustments, however, the contextual estimates (before and after) would 
receive disproportionate emphasis. With w = 4, we would have eight terms corresponding 
to fragment context and just a single term to represent the tokens found inside a fragment. 
Multiplying the in-field estimate by the mean instance length assigns it its appropriate 
weight in the larger estimate. 

The experiments section will show that BayesLN is an improvement over Bayes, 
but it still has a weakness that becomes obvious with experimentation: Both Bayes and 
BayesLN assign too much weight to common tokens. For example, the token "." (period) 
is one of the most common constituents of the speaker field in seminar announcements (as 
part of abbreviations, such as "Dr." or with middle initials). Thus, Bayes and BayesLN 
assign it a high estimate whenever it is encountered within a candidate fragment. Of course, 
this token is very common in general, something which neither of our variants takes into ac- 
count. Consequently, the contents of the three-token fragment". . ." (ellipsis) contribute 
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1 Function BayesIDFEstimate(doc, firsti, lasti) 
2 logprob = log(PositionPrior(firsti)) 
3 + log(LengthPrior(lasti - firsti + 1)) 
4 For i = 1 to $w$ 
5 tab = before[i] 
6 token = TokenAt(doc, firsti - i) 
7 count = tab{token} 
8 logprob = logprob + log(MEst(count, all{token})) 
9 End For 
10 probsum = 0 
11 probcount = 0 
12 For i = firsti to lasti 
13 token = TokenAt(doc, i) 
14 count = in{token} 
15 probsum = probsum + log(MEst(count, all{token})) 
16 probcount = probcount + 1 
17 End For 
18 logprob = logprob + avgFIlength * probsum / probcount 
19 For i = 1 to $w$ 
20 tab = after[i] 
21 token = TokenAt(doc, lasti + i) 
22 count = tab{token} 
23 logprob = logprob + log(MEst(count, all{token})) 
24 End For 
25 Return logprob 
26 End Function 

TABLE 3.6: BayeslDF's estimating procedure for text fragments. 

strongly to Bayes's belief that it is an instance of the speaker field. 

The final variant, which I call BayeslDF, compensates for this by discrediting common 
tokens. It changes how estimates assigned to individual tokens are calculated. Instead of 
the number of training field instances or field instance tokens, the denominator used for 
each such calculation is the total number of times a token occurred in the training corpus. 
Table 3.6 shows the modified procedure. Note how the second number (the denominator) 
in every m-estimate differs from that used in the other two variants (e.g., in fine 8). Ta- 
ble 3.7 shows a sample estimate on the same fragment used for Table 3.4. The change is 
particularly apparent in the estimates assigned to very common tokens, such as colons, and 
to the tokens occurring within the hypothesized instance, which are reasonably common 
inside instances of the location field but rare overall. 

3.3   Experiments 

In this section I present experimental results comparing Rote and the three variants of 
Bayes on the seminar announcement and acquisition domains. Although the two experi- 
ments differ in the details, they share the same framework. In each set of experiments, the 
entire document collection is randomly partitioned several times (five times with the sem- 
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Token Log Prob. Combined 
00 -2.63 

-9.73 

Data 
Likelihood 

PM -2.11 
Place -1.14 
: -3.85 
Baker -0.99 

-3.80 Hall -0.90 
Adamson -0.99 
Wing -1.00 
Host -1.87 

-10.08 : -4.02 
Hagen -2.05 
Schempf -2.14 

Position -5.31 Prior 
Length -3.02 

Posterior -31.94 

TABLE 3.7: A sample BayeslDF fragment likelihood estimation for a location phrase 
("Baker Hall Adamson Wing") taken from the seminar announcement collection. 

inar announcements, ten with the acquisitions articles) into two sets of equal size, training 
and testing. The learners are trained on the training documents and tested on the corre- 
sponding test documents for each such partition. The resulting numbers are averages over 
documents from all test partitions. 

3.3.1    Case Study: Seminar Announcements 

The seminar announcement experiments are designed to answer three questions. First, I am 
interested in the comparative performance of the three variants of Bayes. The comparison 
will show that BayeslDF performs best on all four fields. Second, I want to determine 
how well Rote measures up to BayeslDF. And finally, of course, the experiments should 
provide some insight into the suitability of these approaches as standalone extractors for 
the kind of text genre that is a central focus of this dissertation—informally constructed 
text. 

Table 3.8 shows the precision achieved by each learner at maximum recall, the Prec 
column listing precision and the Rec column listing recall. It is important to keep in mind 
the interaction between these two numbers. While Rote, for example, achieves a surprising 
55.1% precision on the speaker field, which compares very favorably with BayeslDF's 
performance, this score is at much lower recall. 

Table 3.9 compares precisions at approximately 25% recall. Missing values indicate a 
learner did not achieve 25% recall. Note that, depending on the distribution of confidence 
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speaker 
Prec    Rec 

location 
Prec    Rec 

stime 
Prec    Rec 

etime 
Prec    Rec 

Bayes 10.0 11.8 32.8 34.3 96.2 96.2 42.6 91.7 
BayesLN 11.5 13.6 44.8 46.9 98.1 98.1 44.4 95.6 

BayeslDF 28.8 27.4 57.3 58.8 98.2 98.2 46.8 95.7 

Rote 55.1 6.8 89.5 58.1 73.7 73.4 37.4 95.7 

TABLE 3.8: Precision and recall of Rote and three variants of Bayes on the four seminar 
announcement fields. 

speake 
Prec 

r 

Rec 
location 

Prec 
n 

Rec 
stime 

Prec Rec 
etime 

Prec Rec 

Bayes — — 50.7 ±4.1 25.0 100.0 ±0.0 25.1 100.0 ± 0.0 25.7 
BayesLN — — 93.9 ± 2.7 25.0 100.0 ± 0.0 25.1 100.0 ± 0.0 25.0 
BayeslDF 35.6 ±3.5 25.0 97.7 ±1.7 25.2 100.0 ± 0.0 25.3 100.0 ± 0.0 25.0 
Rote — — 99.2 ±1.2 24.8 78.2 ± 4.0 26.3 79.4 ±5.7 27.3 

TABLE 3.9: Precision at the approximate 25% recall level of Rote and the three variants 
of Bayes on the four seminar announcement fields. 

scores, it is not always possible to choose a confidence cut-off, such that exactly 25% recall 
is attained. This explains the occasional slight variations in recall. 

The peak Fl scores shown in Table 3.10 reduce the comparison of learners to a single 
number. The Fl column lists the maximum Fl score achieved by a learner at any point 
on its precision/recall curve, and Prec and Rec show the corresponding precision and re- 
call, respectively. Recall that an Fl score in bold face shows the learner judged best with 
95% confidence. Here we see why it is important to examine performance at less than full 

Fl 
speaker 

Prec Rec Fl 
ocatkffl 
Prec Rec Fl 

stime 
Prec Rec Fl 

etime 
Prec Rec 

Bayes 12.0 14.8 10.1 36.3 41.9 32.0 96.2 96.2 96.2 85.5 97.5 76.1 
BayesLN 14.8 22.3 11.0 48.2 53.2 44.0 98.1 98.1 98.1 88.7 83.9 94.1 
BayeslDF 29.7 41.8 23.0 61.3 66.3 57.0 98.2 98.2 98.2 92.3 94.6 90.1 
Rote 12.1 55.1 6.8 70.6 90.1 58.1 73.9 74.8 73.0 53.6 53.1 54.1 

TABLE 3.10:   Peak Fl scores and corresponding precision and recall for Rote and 
BayeslDF on the seminar announcement fields. 
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FIGURE 3.3: Precision of Rote and BayesIDF as a function of recall on the seminar 
location field. 

recall. Although BayeslDF's full-recall performance on etime, as reported in Table 3.8, 
appears to leave much to be desired, the corresponding numbers in Table 3.10 show that 
BayesIDF actually performs quite well on this field. The relatively low frequency with 
which etime occurs—approximately in only half of the documents—accounts for the dis- 
crepancy. BayeslDF's low precision at full recall in Table 3.8 is due to a large number 
of spurious predictions, but Table 3.10 shows that BayesIDF is able, by means of low 
confidence scores, to separate these spurious predictions from correct ones. 

Without exception, BayesIDF achieves precision, recall, and Fl scores that are at least 
as good as either of the other Bayes variants. The fact that BayesLN also consistently 
scores higher than Bayes suggests that the performance improvement is attributable to 
both length normalization and modified term estimates. Together, these two modifications 
make for a learner, BayesIDF, that is to be preferred over the other two variants. 

Rote is such a simple approach that its performance can give us insights into certain 
characteristics of a domain. From Rote's performance on the speaker field we can infer 
that it is not common for the names of speakers to appear in multiple documents. And in 
only about half of the cases where this occurs does the re-appearance correspond to the 
return engagement of a speaker. 

Rote's performance on the location field is truly surprising. From its 25%-recall perfor- 
mance presented in Table 3.9 we can safely conclude that it is more precise in identifying 
seminar locations than BayesIDF—for the subset of documents to which it is applicable. 
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FIGURE 3.4: Precision of Rote and BayeslDF as a function of recall on the seminar etime 
field. 

Figure 3.3, which presents the precision/curves for all learners on the location field, bol- 
sters this impression. A little reflection makes clear why Rote performs so well on this 
task. University departments tend to designate certain locations for seminars and lectures, 
and the name of such a location (e.g., "Wean Hall 5409") tends not to occur in any other 
context than as the location of such a meeting. 

Rote's performance on the two "time" fields illustrates its limitations. In contrast with 
locations, times occur frequently in this collection. Certain times are common as start and 
end times, a phenomenon that allows Rote to disambiguate some of these occurrences, 
but in order to identify instances of these fields reliably, attention to context is critical. As 
it happens, instances of these fields tend to occur in stereotypical contexts, a fact that all 
variants of Bayes are good at exploiting. 

Figure 3.4 makes this clear and shows why it is useful to use precision/recall graphs 
in assessing a learner. It is evident from this figure that the poor full-recall precision of 
all Bayes variants misrepresents their ability to extract seminar end times. In particular, 
BayeslDF performs at a high level of precision for about 90% of the documents containing 
instances of etime. 

In contrast with etime, BayeslDF's performance on stime requires no tweaking of its 
prediction threshold: Its mastery of this field is nearly complete. This bespeaks a high reg- 
ularity in language surrounding instances of this field and a high frequency of occurrence 
in the data set {stime is instantiated at least once in every document). It is typical, for ex- 
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FIGURE 3.5: Precision of Rote and BayeslDF as a function of recall on the stime field. 

ample, for a start time to be prefixed with the label Time:, and all variants of Bayes excel 
at identifying such superficial patterns. 

Although a small fraction of speaker instances have sufficient regularity to allow these 
two learners to identify them, they are generally much harder to find than those of the 
other three fields. Figure 3.6 shows how precision drops off sharply with increasing recall. 
All learners are bedeviled by the relative rarity of most speaker tokens. The difficulties of 
Bayes and its variants are compounded by variability in the context of speaker instances. 
While some speaker instances are preceded by regular labels, many more occur in gram- 
matical contexts, or in contexts employing layout clues. Some of these patterns can be 
observed in Appendix B, where sample seminar announcements are presented. 

3.3.2   Case Study: Acquisitions 

Documents in the acquisitions collection are quite different from the seminar announce- 
ments. Rather than informal, telegraphic language with a preponderance of suggestive 
labels, the documents in this collection contain prose written to a journalistic standard. 
There are a total of ten fields in this domain: 

• acquired the official name of the company or resource in the process of being ac- 
quired 

• purchaser the official name of the purchaser 
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FIGURE 3.6: Precision of Rote and BayeslDF as a function of recall on the seminar 
speaker field. 

• seller the official name of the seller 

• acqabr the short form of acquired, as typically used in the body of the article (e.g., 
"IBM" for "International Business Machines Inc") 

• purchabr the short form of the purchaser 

• sellerabr the short form of the seller 

• dlramt the amount paid for the acquisition 

• status a short phrase indicating the status of negotiations 

• acqloc the geographical location of acquired 

• acqbus the business of acquired (e.g., "bank" or "software for home entertainment") 

Performance numbers presented below are the result of a 10-fold experiment in this domain. 
The object of this experiment, which compares Rote and BayeslDF, is to determine to 
what extent the encouraging results observed for the seminar announcements carry over to 
a more traditional information extraction problem. 

If the term-space learners are able to make inroads into most of the seminar announce- 
ment fields, the situation is reversed in the acquisitions domain. Table 3.11 shows precision 
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Approx. 25% recall Full recall 
Rote BayeslDF Rote BayeslDF 

Prec Rec Prec Rec Prec Rec Prec Rec 
acquired — — — — 59.6 11.2 19.8 20.0 
purchaser — — 52.2 ±2.7 25.0 43.9 10.8 36.9 40.4 
seller — — 30.6 ±2.9 25.0 41.7 10.8 15.6 38.7 
acqabr — — 36.4 ±2.4 25.0 22.1 12.0 23.2 32.1 
purchabr — — 51.7 ±3.0 25.1 16.8 9.4 39.6 52.9 
sellerabr — — 33.0 ±3.5 25.0 9.8 7.8 16.0 51.5 
dlramt 74.3 ±3.9 26.7 75.5 ±4.0 25.0 63.2 38.8 24.1 54.5 
status 67.8 ± 3.2 24.6 51.5 ±2.9 25.0 42.0 50.7 33.0 43.6 
acqloc — — — — 6.4 12.4 7.0 23.6 
acqbus — — — — 8.2 6.7 4.1 10.7 

TABLE 3.11: Precision of Rote and BayeslDF on the ten acquisitions fields at two recall 
levels, 25% and full. 

z 
Fl 

icquirec 
Prec 

i 
Rec 

P 
Fl 

urchase 
Prec 

;r 
Rec Fl 

seller 
Prec Rec 

Rote 18.9 66.5 11.0 17.4 43.9 10.8 17.2 41.7 10.8 
BayeslDF 20.2 21.7 19.0 39.5 40.0 39.0 28.5 28.9 28.0 

acqabr purchabr sellerabr 
Rote 17.0 37.5 11.0 13.5 26.4 9.0 9.8 15.7 7.1 
BayeslDF 29.8 34.8 26.0 47.4 47.8 47.0 31.8 29.1 35.1 

dlramt status acqloc acqbus 
Rote 48.7 67.4 38.1 49.6 50.3 49.0 10.3 10.6 10.0 7.4 8.2 6.7 
BayeslDF 52.6 58.2 48.0 41.3 43.9 39.0 20.7 24.1 18.1 9.0 9.0 9.0 

TABLE 3.12:  Peak Fl scores, with corresponding precision and recall, for Rote and 
BayeslDF on the acquisitions fields. 
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FIGURE 3.7: Precision of Rote and BayeslDF as a function of recall on the acquired 
(purchased company or resource) field. 

and recall performance of Rote and BayeslDF in this domain, both at approximately 25% 
recall and at the maximum recall achieved by the learner. Again, missing values indicate 
that a learner did not achieve 25% recall for the respective field. Table 3.12 presents the 
corresponding Fl scores. The most striking feature of these numbers in both these tables 
is how much harder the acquisition fields are than the seminar announcement fields. The 
same comparative pattern is also evident: Rote has limited applicability, achieving compet- 
itive performance on a couple fields—status and dlramt—while BayeslDF achieves higher 
recall scores. 

Figures 3.7 through 3.11 present precision/recall comparisons of Rote and BayeslDF 
on five of the acquisitions fields. Figure 3.8 (purchaser) can be regarded as typical: BayeslDF 
achieves higher precision than Rote at comparable recall levels and higher recall overall. 
Precision/recall curves due to BayeslDF also tend to exhibit a more or less smooth, mono- 
tonic decline, indicating a learner whose confidence correlates well with the probability 
that a prediction is correct. Typically, of course, the decline is too steep for BayeslDF to 
be very useful by itself. Rote, on the other hand, often does not achieve high enough recall 
levels to make a comparison of curves between the two learners interesting. 

The difference in performance for BayeslDF between the acquired (Figure 3.7) and 
purchaser (Figure 3.8) fields is somewhat surprising. The two fields have roughly the same 
frequency of occurrence—acquired and purchaser occur on average 1.14 and 1.04 times 
per file, respectively—and both have the same typical surface form (i.e., names of compa- 
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FIGURE 3.8: Precision of Rote and BayeslDF as a function of recall on the purchaser 
field. 

FIRST WISCONSIN <FWB> TO BUY MINNESOTA BANK 
MILWAUKEE, Wis., March 26 - First Wisconsin Corp said it 

plans to acquire Shelard Bancshares Inc for about 2 5 mln dlrs 

TABLE 3.13: The first three fines of an acquisition article showing a typical pattern of field 
instantiation: purchaser immediately following the dateline. 

nies). I attribute this difference to conventions of presentation which BayeslDF is better 
able to exploit for purchaser than for acquired. It is common for the name of the purchas- 
ing company to head the lead sentence in an acquisition article, immediately following the 
dateline. An example of this is shown in Table 3.13. BayeslDF is able to use regularities 
found in the dateline and the sentence's main verb (e.g., "said" or "announced"). Similar 
regularities surround many instances of the acquired field, but these are apparently less 
common. 

Figure 3.9 is typical of several of the precision/recall curves for this domain. Again, the 
BayeslDF curve exhibits a graceful downward trend, while Rote achieves substantially 
worse precision—how much worse depends on the field—and lower recall. 
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FIGURE 3.9: Precision of Rote and BayeslDF as a function of recall on the acqabr field 
(short version of acquired). 
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FIGURE 3.10: Precision of Rote and BayeslDF as a function of recall on the dlramt field. 
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FIGURE 3.11: Precision of Rote and BayeslDF as a function of recall on the status field. 

As with the seminar announcements, there is at least one field for which Rote achieves 
high enough performance to be considered useful as a standalone extractor. For the dlramt 
field (Figure 3.10) it is competitive with BayeslDF, up to a certain recall level, and for 
the status field (Figure 3.11) it is strictly better. Again, these are fields, instances of which 
are often easy to distinguish from the rest of the text. Most of Rote's precision on the 
dlramt field is probably attributable to its recognition of the terms "undisclosed" and "not 
disclosed," which instantiate this field when a company declines to reveal the price of a 
purchase, rather than of actual amounts paid. The words "disclosed" or "undisclosed" 
occur a total of 115 times in the document collection. 87 of these occurrences are as part of 
a dlramt field, accounting for about 31% of all 282 instantiations of dlramt. Such simple, 
Stereotypie language is even more common for the status field, where phrases like "letter 
of intent" and "agreed to buy" are the norm. 

3.4   Discussion 

The results presented in this chapter leave little doubt that term-space learners like Rote 
and BayeslDF are appropriate for some information extraction tasks. They also make clear 
that their application is limited to fields characterized by highly Stereotypie language. Such 
fields do occur naturally, as part of reasonable domain definitions; three of the four fields 
in the seminar announcement domain are susceptible to term-space methods. And even in 
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"harder" domains, some fields can be handled, at least in part, by these methods (witness 
the dlramt and status fields in the acquisitions domain). 

Not surprisingly, of the two term-space approaches, the statistical approach, Bayes, 
typically attains higher recall. For best performance, however, I found a straightforward 
adaptation of Naive Bayes needed to be modified with heuristics which, while they make 
sense intuitively, are hard to justify in strict Bayesian terms. Nevertheless, BayeslDF 
provides some indication of the kind of performance we might expect from statistical term- 
space learners, and I use it in the rest of the thesis both as a convenient baseline, as well as a 
point of departure for the experiments with grammatical inference presented in Chapter 4. 

BayeslDF is strongest on fields with highly regular contexts, such as simple labels 
or patterns of language marked by domain-specific conventions. On the other hand, it is 
hampered by low-frequency tokens. For example, its performance is relatively poor on 
name fields (company names, the names of seminar speakers): While fields like stime are 
characterized by reasonably high-frequency tokens (e.g., "3", ":", "00"), the constituent 
tokens of name fields are as often as not relatively rare (e.g., "Freitag"). 

Rote is even more extreme in its reliance on high frequencies. It requires that whole 
fragments be repeated. However, some fields do have this character. For such fields 
Rote's precision is typically high, and its confidence scores are relatively reliable, even 
if it achieves lower recall than alternative approaches. Because of this, it is attractive as a 
partial solution to a field extraction problem in many cases. 

Rote's reasonable performance on a few of the fields these experiments investigate 
prompts an important question: Just how hard are these learning tasks? The nearly perfect 
performance of BayeslDF on the seminar start time field may give rise to similar concerns. 
If a knowledge-poor learning approach can solve a task, perhaps it would be more fruitful to 
look elsewhere for interesting learning problems. Certainly no slot-filling problem studied 
at MUC can be solved so easily. 

In fact, it is difficult to know this for certain by analyzing results reported in the MUC 
proceedings. The MUC performance numbers represent average performance over all slots 
either predicted by a system or present in the answer keys. Thus, they shed no light on the 
difficulty of filling a particular type of slot. This is a reflection, in part, of goals that differ 
from the ones I have set for myself in this thesis. As noted in the previous chapter, a MUC 
system is a collection of components devoted to the completion of diverse tasks. MUC 
evaluations measure a system's ability to screen out irrelevant documents, spot candidate 
noun phrases, combine evidence from different locations in a document, in addition to 
filling individual slots. Consequently, a comparison between the results I report and those 
reported for MUC tasks is somewhat dubious. And, as stated, my aim is less the design 
of an end-to-end information extraction system for journalistic or technical prose than an 
investigation into learning approaches to the slot filling problem. 

Aside from the problem of extracting from HTML, little attention has been paid to "un- 
conventional" information extraction problems—far less attention that the potential useful- 
ness of good solutions would seem to warrant. Thus, I account BayeslDF's performance 
on the stime field, an admittedly easy learning task, a success. Finding a seminar start time 
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is in some sense a "natural" problem, and a type of problem which has been explored very 
little. 

The argument that Rote is a priori too simple can be met with similar considerations. 
In fact, as we have seen, Rote is useful for some natural extraction problems. And even if 
its usefulness is limited to a fraction of the documents in a domain, a real information ex- 
traction system can realize benefit by treating it as a source of information to be considered 
in making final extraction decisions. 



Chapter 4 

Learning Field Structure with 
Grammatical Inference 

The limitations of BayeslDF are apparent in some of the errors in makes, er- 
rors of boundary identification. BayeslDF forms its estimate based on term 
frequency statistics and lacks any notion of abstract structure. In this chapter 
I ask if it is possible to graft a notion of structure onto BayeslDF by com- 
bining it with a learner that can recognize structure. This is an application 
of multistrategy learning. I review the paradigm of grammatical inference 
and describe Alergia, a prominent algorithm from this paradigm. I also dis- 
cuss the problem of representing text fragments so that effective generalization 
can occur. The proposed solution to this representation problem is a covering 
algorithm for inferring decision lists, which are used to transduce raw frag- 
ments into an abstract form. Experiments in which BayeslDF is combined 
with grammars learned over transduced field instances show large improve- 
ments in performance over that achieved by either BayeslDF or the grammars 
in isolation. 

Although BayeslDF is surprisingly good at identifying field instances, it can have dif- 
ficulty identifying boundaries precisely. Often, BayeslDF extracts an unintelligible piece 
of an instance, or a fragment containing tokens from the surrounding text which a human 
would consider trivial to filter out. Figure 4.1 gives examples of some BayeslDF pre- 
dictions which, though counted as errors, are successful at approximately locating field 
instances. Each prediction in the figure is BayeslDF's highest-confidence prediction for 
some document. How well would BayeslDF have performed if such responses were not 
counted as errors? Figures 4.2 and 4.3 attempt to answer this question, showing preci- 
sion/recall curves for BayeslDF under three separate criteria—overlap, contain, and ex- 
act. Overlap counts a prediction correct if any part of it shares a token with a field instance. 
Contain counts a prediction correct if it contains all tokens of a field instance, plus at most 5 
neighboring tokens. The comparison is striking. It is evident that for a substantial number 
of documents BayeslDF finds a field instance without getting its boundaries right. In- 

55 
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Location 

Confidence: -89.69 
Fragment: GSIA 259  Refreshments  served 

Confidence: -77.30 
Fragment: Mellon Institute. 

Speaker 

Confidence: -68.97 
Fragment: Dr. 

Confidence: -80.84 
Fragment: Antal  Bejczy Lecture Nov.   11 

FIGURE 4.1: Examples of poor alignment from actual tests of BayeslDF. 
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FIGURE 4.2: Effect of changing criterion of correctness on BayeslDF performance on the 
speaker field. 
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FIGURE 4.3: Effect of changing criterion of correctness on BayeslDF performance on the 
location field. 

deed, it is almost perfect at identifying the approximate region where the location field is 
instantiated. 

BayeslDF and Rote share a fundamental limitation: They cannot exploit abstract fea- 
tures of the text, but must rely on statistics based on the occurrence of raw terms. For 
example, they cannot express that a token belongs to the class of capitalized or numeric 
tokens. This gives rise to BayeslDF's alignment difficulties whenever a field instance con- 
tains or is surrounded by uncommon terms. The speaker fragments in Figure 4.1 make 
this clear. The "Dr" token in the top fragment is a common component of seminar speaker 
names; a large number of the last names encountered, however, are not so common. Con- 
sequently, BayeslDF reaches a higher estimate by excluding the last name. The result is a 
prediction which, taken as a whole, is useless, but not absurd. It is apparent to a human ob- 
server that BayeslDF's prediction is nearly correct, and that the important text follows the 
extracted fragment. The phrase "Dr." sets up strong expectations to this effect. A human 
reader can quickly locate and extract names having this form—Dr. capitalized-word—even 
without reading a text for comprehension. 
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4.1    Grammatical Inference 

Clearly, BayeslDF is hobbled by its lack of any notion of field structure. This section de- 
scribes a remedy for this lack using grammatical inference. Grammatical inference refers 
to a class of algorithms that infer formal language grammars from example sequences. 
This section describes one algorithm from the literature, Alergia (Carrasco and Oncina, 
1994), and proposes a way to graft it onto BayeslDF as a means of supplying BayeslDF 
with a notion of structure. Before this can happen, however, the text that is used to train 
Alergia must be represented in a suitable form, as sequences of symbols from some alpha- 
bet of manageable size. These symbols should reflect the elements of structure we want 
the grammar to capture. Generating this alphabet and a method for translating text into 
alphabet symbols—what I term alphabet transduction—is treated as a separate learning 
problem. Beginning with 26 token features, I describe and experiment with three related 
methods for automatically generating a transducer. 

It is hard to avoid the impression that a simple notion of the appropriate structure of 
a field might improve the alignment of the predictions shown in Figure 4.1. Suppose we 
had a method which could assess a candidate field instance and return an estimate of the 
probability that it has the right structure, where structure captures some of the intuitions 
developed above. How might we enhance BayeslDF to take advantage of this estimate? 
The idea I pursue in this chapter is to add this structure estimate as another term in the 
product that constitutes BayeslDF's larger estimate. Recall that we are using Bayes' Rule 
to construct our estimate: 

where H is some hypothesis and D is data that serves to confirm or deny it. But because 
we only seek to maximize this formula over a set of competing hypotheses, we ignore 
the denominator and concentrate on maximizing Pr(D\H) Pv(H). The solution I propose 
retains BayeslDF's estimate of Pr(H) (a product of position and length estimates) and 
seeks to refine Pv(D\H). BayeslDF's estimate is a product of numbers reflecting the 
occurrence of terms in and around the hypothesized field instance. I will abbreviate this 
product with the term Pr(terms\H). In other words, for BayeslDF: 

Px{D\H) = Pv(terms\H) 

Now, suppose we have an estimate of the structural appropriateness of a hypothesized in- 
stance. In the spirit of Naive Bayes, we can augment our conditional estimate thus: 

Pr(D\H) = Pi(terms\H) Px{structure\H) 

The virtue of this approach is that it amounts to adding a single term to the larger product 
that already constitutes BayeslDF's estimate. BayeslDF can be run unaltered. The struc- 
tural estimate, which is given to us by some independently run algorithm, is multiplied with 
BayeslDF's estimate to produce the estimate of what I will call BayesGI. 
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To make this structural estimate, I borrow ideas and an algorithm from the field of 
grammatical inference. In this section I present an outline of the grammatical inference 
problem and sketch the state-merging method for solving it. I also describe Alergia, a 
leading state-merging algorithm, which is used in the experiments presented below. 

4.1.1   General Setting 

In broad terms, the grammatical inference problem is this: Given a set of sequences from 
some formal language, induce a grammar for the language. We are given an alphabet E 
and a set of sequences S composed of symbols from E. The sequences in S come from 
some unknown language L C E*. (In some settings we are also given a set of sequences 5" 
not in L.) The object of grammatical inference is to identify L, i.e., to construct a grammar 
that will accept any sequence from L and reject any sequence not in L. 

The tractability of this problem depends on a number of factors: the size and com- 
prehensiveness of S, the availability of S', the class of languages from which L is drawn, 
and the strictness of the identification requirements, among other things. The experiments 
presented in this chapter assume that L is the class of regular languages, and that gram- 
matical inference methods for learning finite state automata (FSA) are appropriate. There 
are a number of general-purpose approaches to this problem available in the literature. I 
consider algorithms that assume the presence of only positive training data. There are a 
couple of reasons for this. For one thing, although a requirement of negative data is not 
difficult to fulfill in this domain—there is plenty of non-field text for any given extraction 
problem—it introduces a sampling problem. There is such a large number of potential neg- 
ative instances that it might be necessary to use only a subset, and the quality of results 
may depend on how the negative data are selected. For another thing, this domain does not 
provide any guarantee that the set of negative and positive examples are disjoint. For ex- 
ample, the fragment "3 :3 0" appearing in a seminar announcement may or may not be the 
start time of a seminar (an instance of stime). Grammatical inference algorithms designed 
from formal considerations assume that a consistent solution is possible. Such algorithms 
are therefore unsuitable. 

4.1.2   State-Merging Methods 

Given that we believe L is a regular language, one common approach to grammar construc- 
tion, which has formed the basis of a number of grammatical inference algorithms, is state 
merging. Starting with a maximally specific grammar (called the canonical acceptor), one 
which accepts exactly the sequences from the positive training set S and rejects all others, 
we proceed iteratively to merge pairs of states, thereby creating more general grammars. 
Thus, Gi, the grammar at time step i, has one fewer state than G;_i, and G\ accepts any se- 
quence that Gi-i accepts, i.e., it Gi is a generalization of Gj-i. Furthermore, depending on 
the connectivity of the merged states, Gi may accept sequences that Gj_i rejects. The space 
implicitly searched in this way constitutes a lattice, a "version space" of possible grammars 
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FIGURE 4.4: A canonical acceptor (prefix-tree grammar) representing the training sample 
{110, A, A, A, 0, A, 00,00, A, A, A, 10110, A, A, 100}. 

FIGURE 4.5: The grammar after merging the states of the grammar shown in Figure 4.4 
using Alergia at a particular setting of its generalization parameter a. 

(Dupont et ah, 1994; Mitchell, 1982). Note that when this search is conducted without 
the benefit of negative data, there can be no "G-set," no natural limit to generalization. 

The canonical acceptor takes the form of a prefix tree. The prefix tree grammar is the 
unique deterministic tree encoding of a set of sequences, and it has the requisite feature 
of accepting only those sequences. Figure 4.4 shows an example borrowed from (Carrasco 
and Oncina, 1994), the prefix tree for a set of strings from a language built from an alphabet 
of O's and l's. Not shown are the frequencies Alergia associates with states and transitions. 
The double circles represent states which "accept"; only sequences produced by beginning 
at the start state and terminating in some accepting state belong to the language this au- 
tomaton encodes. Obviously, since it accepts only the sequences in a finite sample, the 
canonical acceptor cannot recognize a language with infinite cardinality. However, state 
merging can introduce loops into the grammar (Figure 4.5), so that after generalization any 
regular language can be represented in principle. 

How to choose the states to merge and when to stop merging are details left to the 
individual algorithm. State merging can be based on evidence local to the two states to 
be merged, or on some global criterion (e.g., whether the proposed merge introduces a 
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loop, or whether it skews the distribution of state fan-out unacceptably). Stopping may 
depend on the availability of good merges, but ideally it will also consider some prior notion 
of the structure of the target language L. The difficulty of these choices is exacerbated 
by a reliance on exclusively positive examples. Thus, perhaps even more than related 
machine learning settings, grammatical inference would benefit from convenient methods 
for expressing prior expectations about the target language L, and for integrating those 
expectations into the search for a grammar. Unfortunately, the bulk of work in this area 
has been in the development of generic algorithms that address small, formally constrained 
parts of the larger problem. 

4.1.3   Alergia 

Alergia is a leading method for inferring stochastic finite state automata in response to pos- 
itive training sequences (Carrasco and Oncina, 1994). A stochastic FSA is a generalization 
of a deterministic FSA in which each transition and each accepting state has an associated 
probability. For any given state in such an automaton, the probability of acceptance (i.e., 
of the state being terminal) and the probabilities of its outgoing transitions must all sum to 
one. Thus, a probability can be associated with any sequence belonging to the language 
the FSA models. This membership probability is the product of the transition probabilities 
along the unique state trajectory encoded by the sequence, and the acceptance probability 
of the terminal state. 

In Alergia, search is organized as a single 0(n2) pass through the set of states, in which, 
for each pair of states Si and Sj, the question is posed, "Are Si and Sj equivalent?" State 
equivalence has two components: 

• The two states accept with the same probability. 

• The two states have equivalent out-transition behavior. For any symbol in E, the 
corresponding outgoing transitions of the two states have the same probability, and 
the two states reached by following the respective transitions are equivalent. 

If two states are deemed equivalent according to these criteria, they are merged. 
Transition and acceptance probabilities are estimated from the training sequences. A 

state, for example, may have been visited n times during training and emitted an 'a' for 
k of those visits. The probability associated with this state's out-transition labeled 'a' is 
simply k/n. With a limited training sample, the above criteria for equivalence are rarely 
met. Consequently, instead of equivalence, Alergia asks whether two states are compatible, 
where compatibility is a probabilistic equivalence. Hoeffding bounds are used to compare 
inter-state acceptance and transition probabilities: 

h_ _ h_ 
nx     n2 

Here, n, is the number of trials and fa the number of successes particular to the behavior of 
some state i. Suppose we want to know whether States 1 and 2 have compatible acceptance 
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behavior. Then ri\ is the total number of times any training sequence visited State 1, and 
fx is the number of sequences that terminated at State 1 (the number of times State 1 
accepted). The variables n2 and /2 stand for the same quantities associated with State 2. 
The a parameter, controls the certainty of the equivalence judgment. Lower values of a 
cause more states to be judged equivalent and result in more aggressive generalization. 
Thus, a is a "knob" which must be set before training can occur. Successful inference 
depends on choosing an appropriate value. 

4.2   Inferring Transducers 

In order to conduct grammatical inference effectively, text fragments must be represented 
as sequences of symbols from an alphabet of manageable size. One possibility would be to 
regard a field instance as a sequence of ASCII characters, perhaps allowing generalization 
to exploit some abstract character classes, as in (Goan et al, 1996). This would result in 
a relatively large alphabet and long sequences, and would probably require a large amount 
of data to permit effective generalization. For this task, there appears to be more power in 
structural aspects of entire tokens. Note that the same consideration—limited data—argues 
against using the literal tokens as alphabet symbols. Also, adopting such a representation 
would amount to a variation of Rote and would typically result in low recall. Instead, 
because we want estimates for as many fragments as possible, we want an abstract repre- 
sentation that favors high recall. 

A more interesting idea, therefore, is to replace tokens with symbols that correspond 
to abstract token features, where abstraction is controlled by the structure of the field in 
question. For example, we would like to transduce the seminar speaker fragment, "Dr. 
Koltanowski", to something like 

[tokenDr, token., capitalizedTrue] 

i.e., a three-symbol sequence that effectively retains important, high-frequency tokens, but 
which replaces low-frequency tokens with abstractions that are relevant to the speaker field. 
Under this scheme, a field instance consisting of five tokens becomes a sequence of five 
symbols, each symbol the canonical representation of the corresponding token. I will call 
the procedure that transforms text in this way an alphabet transducer. 

It is unlikely that any single transducer will be best for all fields, even if it is adapted to a 
single domain. Consequently, I take a learning approach to constructing field-specific trans- 
ducers. Ideally, the representation of a token should depend on its position in a fragment, 
even the grammar state at which it is observed. If our grammar has observed the sym- 
bol Wean as part of seminar location, we do not want our representation to replace both 
"Hall" and "5409" with the symbol Four-character-token, since "Wean 5409" 
is a complete location, while "Wean Hall" is not. 

For simplicity, the approach I adopt assumes that token ordering information can be 
disregarded in constructing a transducer for a field. The learning problem is shown in 
Table 4.1. Individual tokens are stripped of their context and labeled only according to 
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Input: 
Positive: All field tokens in corpus 
Negative: All non-field tokens in corpus 
Features: A set of token-oriented abstract features 

Output: 
Function mapping a token to its abstract representation 

TABLE 4.1: I/O behavior of transducer induction. 

Grammar 

Wean 5409 
4 603 Wean Ha 11- 
DH 213 

Alphabet 

Transducer 

"Wean" Quad-digit 
-Quad-digit "Wean" "Hall 
All-caps tri-digit 

FIGURE 4.6: The pipeline through which raw text fragments are passed to produce struc- 
ture estimates. 

Quad-digit? 0.11 
Lisp-punct? 0.07 
Triple-digit? 0.03 
"Auditorium" 0.03 
N-then-A?0.02 

| 0.07J 

'. 'hall'0.3 

"Auditorium" 0.24 
i Triple-digit? 0.24 
; N-then-A? 0.24 
: Quad-digit? 0.03 

FIGURE 4.7:  A small piece of an automaton, used for recognizing seminar locations, 
learned by Alergia using a decision list created with m-estimates. 
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If 
word = "wean" 
word = "hall" 
triple-digit = true 
quad-digit = true 
capitalized = true 

Emit 
word+wean 
word+hall 
triple-digit+true 
quad-digit+true 
capitalized+true 

TABLE 4.2: Excerpt from one decision list inferred for the location field. 

word 
singletonp 
doubletonp 
tripletonp 
quadrupletonp 
longp 

single.digiLp 
double_char_p 
double.digiLp 
triple_char_p 
triple_digit_p 

long_char_p 
long_digit_p 
capitalized-p 
alLupper_case_p 
alLlower_case-p 

quadruple_char_p    numericp 
single_char_p     quadruple_digit_p    sentence_punct_p 

punctuationp 
hybrid_anum_p 
a_then_num_p 
num_then_a_p 
multi_word_cap_p 

TABLE 4.3: The features used for inferring alphabet transducers. 

whether they occur in an instance of the field in question. With the learned transducer, the 
overall pipeline is illustrated in Figure 4.6. An excerpt from a learned grammar is shown 
in Figure 4.7. The automaton from which this was taken contained a total of 100 states. 
Numbers next to emissions are transition probabilities, while those in boxes are accep- 
tance probabilities. Dotted boxes containing multiple emission/probability pairs represent 
multiple transitions. Combining the two learned components, the transducer and the gram- 
mar, yields a function from a raw candidate field instance to an estimate of its structural 
membership in the target field. 

For the learned transducer I use a decision list representation. Table 4.2 shows part of 
a sample decision list, which is a list of pattern/emission rules, for the location field. To 
transduce a token, we compare it with each pattern in turn until a matching one is found. 
The token is then replaced with the corresponding symbol. If no matching pattern is found, 
the token is replaced with the symbol unknown. The idea is that more salient patterns 
will appear higher in the list, so that even if a token matches more than one pattern, it will 
always be represented in the most useful way. Given the decision list in Table 4.2, for 
example, the word "Wean" will always cause the symbol word+wean to be emitted, even 
though it also matches the capitalized = true pattern. This pattern is reserved for tokens 
less useful than "Wean" in identifying seminar locations. 

A covering algorithm is used to construct decision lists. One input to the learning 
procedure is a set of features to consider in forming patterns. In the experiments reported 
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1 Function InferATList(docs, field, features) 
2 decisionList = the empty list 
3 positiveFeatHash = empty hash  table 
4 anyFeatHash = empty hash  table 
5 tcount = FieldTokenUncoveredCount(docs, field, decisionList) 
6 acount = AnyTokenUncoveredCount(docs, decisionList) 
7 While tcount >= MinimumFieldTokensUncovered 
8 Set all  feature-value entries in hash  tables  to  0 
9 DoPositiveAccounting(docs, field, features, positiveFeatHash) 
10 DoAnyAccounting(docs, field, features, anyFeatHash) 
11 (feat, value) = FindBestFV(tcount, acount, positiveFeatHash, anyFeatHash) 
12 AddToDecisionList(decisionList, feat, value) 
13 tcount = FieldTokenUncoveredCount(docs, field, decisionList) 
14 acount = AnyTokenUncoveredCount(docs, decisionList) 
15 End While 
16 Return decisionList 
17 End Function 

TABLE 4.4: The covering procedure used to construct alphabet transducers. 

here, I used the 26 features shown in Figure 4.3. Values for all of these features can be 
readily computed by direct inspection of a token. The word feature returns the literal 
token, modulo capitalization. Here, longp means longer than four characters in length. 
Construction of the decision list proceeds greedily. At each step, a feature-value pattern 
that matches some of the positive tokens is appended to the end of the list, and all matching 
tokens are removed from the set of positive examples. This process repeats until a stopping 
criterion is reached, either too few tokens remain in the set of positive examples, or the list 
has reached a pre-specified length. 

Table 4.4 presents pseudocode of the procedure used to build the decision list. The hash 
tables positiveFeatHash (line 3) and anyFeatHash (line 4) are used to map fea- 
ture/value pairs to integer counts—the number of times a feature/value tested true for a field 
token and overall, respectively. Counts of the number of uncovered field tokens and general 
tokens remaining are provided by FieldTokenUncoveredCount () (fines 5 and 13) 
and AnyTokenUncoveredCount () (lines 6 and 14), respectively. At each iteration of 
the while-loop (fines 7 through 15) the algorithm scans the document collection, counting 
the number of times each feature/value test holds for field tokens (DoPos i t i veAccount ing, 
fine 9) and, depending on the objective function, for tokens in general (DoAnyAccount ing, 
line 10). The choice of which feature/value to install in the list is made by FindBe st FV() 
(line 11). 

How should we choose the patterns to add to our fist? Should we prefer a large fist 
(alphabet) or a small one? Is it important that the patterns used are those that tend to 
distinguish field tokens from non-field tokens? Or is it sufficient to choose patterns which 
distribute field tokens evenly? I experiment with three basic approaches: 

• Spread evenly.  Decide how many symbols (k) we want in our alphabet prior to 
inference of the decision fist. At each step i, choose the feature-value test that comes 
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closest to matching lf(k-i-l) of the remaining positive tokens. The set of non-field 
tokens is disregarded. 

• FOIL gain. At each step, choose the feature-value pair (call this test UJ) that max- 
imizes fwilogifu/riu) - log(//n)), where / is the number of field-instance tokens 
remaining, n is the total number of tokens remaining, and fu and nu are the num- 
ber of field-instance and general tokens, respectively, that match to. This is similar to 
choosing the first test of a FOIL rule to distinguish field-instance tokens from general 
tokens (Quinlan, 1990). 

• M-estimates. Choose the feature-value pair that maximizes fl£™^ , for a small 
value of m (m = 3 in these experiments). This rests on the same intuition as for 
FOIL gain, but uses a different metric. 

The effect of the spread evenly approach is to sort field tokens into k bins of roughly 
equal size. Underlying this approach is the hypothesis that it will be possible to infer 
discriminative grammars even without discriminative symbols—as long as the alphabet is 
rich enough to provide for interesting multi-token sequences. Note that this approach does 
not arrange decision-list patterns in order of salience to a field. In contrast, the other two 
approaches do select patterns that tend to discriminate field tokens from non-field tokens, 
so the symbols they emit contain more information that those emitted by the first approach. 
FOIL gain prefers more general patterns at each step than M-estimates and consequently 
tends to generate smaller transducers. 

4.3   Experiments 

The same 5-fold experimental framework, with the same partitions, was used in these ex- 
periments as in Chapter 3. First, the training set was used to construct an alphabet trans- 
ducer. Next, the transducer was used to represent field instances as symbol sequences, 
and Alergia was trained on the resulting sequences. Finally, each of the following extrac- 
tors was tested on the test set: BayeslDF by itself, the Alergia grammar by itself, and 
BayeslDF combined with the grammar, as described in this chapter. For succinctness I 
call this last extractor BayesGI. 

I tried five methods for generating transducers: 

M-estimates Use m-estimates, as described above, with m set to a small value. 

Information gain Use information gain, as described above. 

Spread 5 Choose tests that spread field tokens as evenly as possible into five bins. 

Spread 10 Like Spread 5, but spread over 10 bins. 

Spread 20 Like Spread 5, but spread over 20 bins. 
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Approx. 25% recall Full recall 
Alergia 

Prec    Rec 
BayesGI 

Prec        Rec 
Alergia 

Prec    Rec 
BayesGI 

Prec    Rec 
CA — — 74.8 ± 4.6 25.0 15.8 18.6 46.0 53.3 
a = 0.9 — — 67.2 ±4.7 25.0 16.3 19.2 42.2 49.1 
a = 0.8 — — 66.3 ±4.7 25.0 17.3 20.3 41.1 47.8 
a = 0.5 — — 63.9 ±4.7 25.0 17.2 20.2 41.4 48.2 

BayeslDF 
Prec                    Rec 

BayeslDF 
Prec               Rec 

35.6 ±3.5 25.0 28.8 27.4 

TABLE 4.5: Precision/recall results for Alergia and BayesGI on the speaker field, with the 
alphabet transducer produced using m-estimates, at various settings of Alergia's general- 
ization parameter. 

Approx. 25% recall Full recall 
Alergij 

Prec 
i 

Rec 
BayesC 

Prec 
;i 

Rec 
Ale 

Prec 
rgia 

Rec 
BayesGI 

Prec    Rec 
CA 99.0 ±1.1 25.3 99.3 ±0.9 25.0 42.5 AAA 68.1 66.6 
a = 0.9 68.3 ±4.4 25.1 98.6 ±1.3 25.0 39.8 41.7 59.3 61.0 
a = 0.8 97.7 ±1.7 25.2 99.0 ±1.2 25.0 35.2 36.9 60.4 59.7 
a = 0.5 34.9 ± 3.2 25.2 99.3 ±0.9 25.1 27.1 28.3 57.9 57.3 

Baye 
Prec 

sIDF 
Rec 

BayeslDF 
Prec               Rec 

97.7 ±1.7 25.2 57.3 58.8 

TABLE 4.6: Precision/recall results for BayeslDF, Alergia, and BayesGI on the location 
field, using the m-estimates alphabet transducer, at various settings of Alergia's general- 
ization parameter. 

For each transducer so constructed, I tried four settings of a, Alergia's generalization pa- 
rameter: CA, 0.9,0.8, and 0.5. The CA setting used the canonical acceptor without merging 
states. Note that, because the transduction step generalizes field instances, CA is not a rote 
learner. The other settings correspond to increasingly aggressive settings of the generaliza- 
tion parameter; lower settings yield smaller, more general grammars. 

Tables 4.5 and 4.6 show the effect of the various settings of a for the speaker and lo- 
cation fields, respectively. Confidence intervals are at the 95% level. These tables used the 
m-estimate transducer, because m-estimates yielded the best transducers of the methods 
we tried, but it is consistent with results for other transducers. The most important conclu- 
sion to be drawn from these tables is that BayeslDF benefits a great deal from access to 
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Approx. 25% recall Full recall 
CA BayesGI CA BayesGI 

Prec Rec Prec Rec Prec Rec Prec Rec 

M. Est. — — 74.8 ±4.6 25.0 15.8 18.6 46.0 53.3 
I. Gain — — 63.1 ±4.7 25.0 5.6 6.6 37.8 44.0 
Spread 5 — — 68.6 ±4.7 25.0 12.4 14.6 37.7 43.9 
Spread 10 — — 70.7 ±4.7 25.0 13.4 15.8 37.4 43.2 
Spread 20 25.0 ±2.6 25.2 77.9 ±4.5 25.0 21.7 25.6 44.7 50.8 

TABLE 4.7: Precision results on the speaker field for canonical acceptors (with and without 
BayeslDF) using five different alphabets. 

Approx. 50% recall Full recall 
CA BayesGI CA BayesGI 

Prec Rec Prec Rec Prec Rec Prec Rec 
M. Est. 99.0 ±1.1 25.3 99.3 ±0.9 25.0 42.5 44.4 68.1 66.6 
I. Gain 41.4 ±3.6 25.2 99.0 ±1.2 25.0 30.1 31.5 58.8 61.2 
Spread 5 — — — — 6.1 6.4 9.4 9.7 
Spread 10 88.0 ±3.5 24.5 97.3 ±1.8 25.0 31.7 33.2 45.3 46.6 
Spread 20 72.7 ±4.4 25.0 99.0 ±1.2 25.0 29.3 30.7 61.7 63.7 

TABLE 4.8: Precision results on the location field for canonical acceptors (with and with- 
out BayeslDF) using five different alphabets. 

the structural information a grammar provides. This benefit is realized despite the surpris- 
ingly poor performance of the stand-alone grammars, which is due to over-generalization 
brought on by reliance on positive data alone. 

The second general conclusion is that, while the a setting appears to have little effect 
on the isolated grammar, it does make a difference when this grammar is combined with 
BayeslDF. In particular, state merging appears to hurt performance. Although the dif- 
ferences in precision between the canonical acceptor and the best merged automaton are 
not statistically significant at the 95% confidence level, this is a consistent effect across all 
transduction methods and fields. It appears that the abstraction afforded by transduction 
provides all of the benefit, which state merging diminishes. 

What, then, are the factors that influence a good transduction for this problem? Is the 
size of the resulting alphabet important? Is it important to choose a transduction method 
that seeks to distinguish field tokens from non-field tokens? Tables 4.7 (precision/recall 
scores on speaker), 4.8 (precision/recall scores on location), and 4.9 (alphabet sizes learned 
by the two "Gain" methods for all four seminar announcement fields) provide some insight. 
Alphabet (decision list) size is clearly a factor that influences the usefulness of the resulting 
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speaker location stime etime 
/. Gain 3.2 13.4 7.2 6.6 
M. Est. 34.8 48.2 24.8 20.8 

TABLE 4.9: Average size of decision lists generated using information gain and m-estimate 
metrics across the four seminar announcement fields. 

speaker location stime etime 
Alergia 17.2 45.1 57.5 46.6 
BayeslDF 29.7 61.3 98.2 92.3 
BayesGI 52.4 71.4 96.3 89.9 

TABLE 4.10: Peak Fl scores for Alergia, BayeslDF, and BayesGI on the seminar an- 
nouncement fields. 

grammar. This result ran counter to my expectations. I was concerned that large alphabets 
would stand in the way of effective generalization over the essential elements of field struc- 
ture. 

Tables 4.7 and 4.8 do not support a clear preference of m-estimates over Spread 20. 
From a comparison over all fields, I conclude that the m-estimates method performs slightly 
better. The difference is small enough in all cases, however, to leave room for doubt. Rather 
than an abstraction that helps distinguish instances from non-instances, what appears to 
be important is a large enough alphabet to allow effective representation of the overall 
structure. As seen in Table 4.9, m-estimates produce on average the largest alphabets. 

It is counter-intuitive that the combination of no state merging and large alphabet sizes 
should yield the best results. This may simply be a task for which it is important to err on 
the side of specificity. Note that even if sequences of raw field tokens—the most specific 
representation possible—are used as input for grammatical inference, it is often impossible 
to construct a grammar that separates field instances from all other fragments. Without at- 
tention to context, for example, there is no way to tell whether the fragment "2:00 pm" is 
a seminar start time or the time of some other event associated with a seminar. Abstracting 
away from the literal tokens exacerbates this problem. The successful transducers, there- 
fore, are conservative, causing any tokens that occur more than a few times to pass through 
literally (using the word features and selecting abstract representations only for uncommon 
or generic tokens. 

Table 4.10 presents an Fl summary for the four seminar announcement fields (recall 
that bold face indicates the best peak Fl with high confidence), and Figures 4.8 through 
4.11 show the entire precision/recall performance of Bayesl DF and Alergia, both alone and 
combined, on speaker, location, stime, etime, respectively. The grammar used to produce 
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FIGURE 4.8: Precision/recall plot comparing BayesGI, BayeslDF, and the canonical ac- 
ceptor (CA grammar) on speaker. 
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these results was generated on sequences produced by the m-estimate transducer inference 
method, and the generalization level was set to CA. Improvements due to the combination 
of methods are obvious for the two fields on which BayeslDF stands to improve, speaker 
and location. BayesGI performs slightly worse than BayeslDF on the two time fields. 
The drop in performance, however, occurs only at the high-recall end of the curve. 

4.4   Discussion 

Why does the multistrategy combination of BayeslDF and the token grammar provide 
such benefit? What are the general lessons to be drawn from these experiments? It seems 
fairly obvious that the fact that the two constituent learners attend to different aspects of the 
problem is the source of the performance boost. If the two learners had the same behavior— 
accepting and rejecting the same text fragments—we could not expect to see improvement 
by combining them. In other words, the strength of their combination depends on their 
diversity in terms of representation and bias. On a hard problem, any individual learn- 
ers experiences parts of the space which are difficult for its particular bias. It has been 
suggested that a learner's strengths in some parts of its hypothesis space necessarily en- 
tail weaknesses in others (Schaffer, 1994). The hope of multistrategy learning is that the 
weaknesses of one learner will be covered, partially, by the strengths of another. 

While the positive results obtained for the method described here are gratifying, this 
method leaves something to be desired. Since most of the benefit seems to come from 
identifying the most salient structural aspects of tokens, it would be nice to have a more 
principled approach to finding and representing this structure. The current methods are 
coarse. Treating all the field tokens as elements of a large set for the purposes of training 
a transducer, ignoring co-occurrence and ordering information, while effective, appears to 
neglect useful information. Furthermore, the decision-fist formalism forces us to choose 
one feature of a token with which to represent it. This, too, is a waste of available infor- 
mation. Ultimately, we might want to discard the transduction step altogether, to design 
something like a grammatical inference algorithm that can work with sequences of feature 
vectors. These considerations are a subject for future work. 



Chapter 5 

Relational Learning for Information 
Extraction 

Like the algorithm presented in Chapter 4 that learns alphabet transducers, 
symbolic rule-learning algorithms are also well situated to make use of token 
features. The end target of that algorithm, however, was not the classification 
of fragments. In contrast, this chapter presents a symbolic rule learner that 
searches for extraction patterns based on token features directly. It describes 
SRV, a relational learner for information extraction. Relational learning refers 
to a class of symbolic learners that search a space of relations between exam- 
ples. SRV's relational component is designed to allow it to explore arbitrary 
amounts of field context. Experiments in three domains demonstrate both its 
versatility in exploiting domain-specific information, by means of hand-crafted 
token features, and its comparative superiority in precision and recall over the 
other three learners. 

The results presented in Chapter 4 are sufficiently convincing to establish that useful 
extractors can be based on simple token features. However, the solution presented there 
leaves a few things to be desired: 

• Although the combination of BayeslDF and grammatical inference works, the way 
in which they are combined is somewhat arbitrary. The structural estimate returned 
by grammatical inference is dropped in a naive way into BayeslDF's already naive 
estimate. There is no guarantee that this assigns the structural estimate its proper 
weight. 

• Grammatical inference must express its patterns in terms of all tokens in a field. 
It may be the case, however, that only certain aspects of some of the tokens are 
important. If this is so, then the requirement that all tokens be accounted for could 
hamper generalization. 

73 
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• Training occurs in two separate phases, inferring a transducer and building a gram- 
mar. Feature-value selection is decoupled from the process of building a classifier to 
recognize field instances. 

• Although BayesG I, through Bayes ID F, has a notion of field context, its grammatical 
inference component does not. Thus, any interesting structural patterns in the tokens 
immediately surrounding a field's instances are lost. 

In summary, it would be desirable to have a learner that can apply token features more 
flexibly. The application of any particular feature should be based directly on its usefulness 
in distinguishing field instances from text in general. And this learner should not be limited 
to in-field tokens in its use of such features, but should have the ability to apply them to 
contextual tokens as well. 

5.1    SRV 

In order to meet this requirement, this chapter considers the family of symbolic inductive 
learners, which includes decision tree learners, such as C4.5 (Quinlan, 1993), covering 
algorithms, such as AQ (Michalski, 1983) and CN2 (Clark and Boswell, 1991), and 
inductive logic programming or relational learners, such as FOIL (Quinlan, 1990). Not 
only do learners in this class hold the promise that abstract features of a domain can be used 
effectively and directly, but the structure of the classifier they produce is also attractive for 
the information extraction problem. Their bias is divide and conquer. The learned classifier 
is a set of rules which match sub-patterns in a class, and which are disjunctively combined 
to make predictions. This seems to fit many information extraction tasks well. Often, we 
can identify multiple distinct patterns for a field, any one of which can indicate the presence 
of an instance by itself. This section describes SRV, a relational learner for information 
extraction. 

A symbolic learner typically takes two kinds of input: a representation language and a 
set of examples to be used in training. These examples are divided into n classes. The goal 
of the learner is to produce a set of logical rules (or their functional equivalent) to classify 
each novel example into one of these classes. 

In propositional learning examples are defined in terms of features, which are functions 
mapping examples to typically discrete values. If each example is a day's worth of weather, 
for instance, a possible feature is rainy, a function, the range of which is days and the 
domain of which is the set {yes, no}. Given such a feature, we can express a simple fact 
about a particular day: 

rainyitoday) = yes 

In contrast, in relational learning examples are defined in terms of predicates, which are 
relations. To stick with the weather example, in addition to unary predicates like Rainy, 
our example space may be defined in terms of binary predicates such as 
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Fragment: ...     will  meet   in | Baker Hall  3 00 ,   at  3:30 

Positive example:       Baker Hall  3 00 

Negative examples:    will meet 
will meet in 

meet in 
meet in Baker 

Baker Hall 300, 
Baker Hall 300, at 

Hall 300 

FIGURE 5.1: A text fragment and some of the examples it generates—one positive exam- 
ple, and many negative ones. 

Followed(dayl, day!) 

to express a succession of days, or the ternary predicate 

TempExtremes(Day, Low, High) 

to express the range of temperatures seen on a particular day. In principle, there is no limit 
to the arity of predicates that can be used to describe examples. 

While in propositional learning examples are so many separate entities, the predicates 
of a particular relational learning problem implicitly or explicitly relate examples to each 
other. Relational learners are designed to recognize and exploit such inter-example struc- 
ture. This facility seems appropriate for the information extraction problem, where exam- 
ples (text fragments) are embedded in a larger structure and implicitly related to the text 
that surrounds them in a number of ways. This section describes one way such natural 
relational structure of the information extraction problem can be exploited. 

5.1.1   Example Space 

Like other covering algorithms, SRV requires that the learning problem consist of a set 
of examples, some positive and some negative—the example space. For SRV, examples 
are text fragments. Instances of the field SRV is learning to extract are positive examples. 
As a preprocessing step SRV scans the training corpus to find two numbers, min and max, 
the number of tokens in the smallest and largest field instances, respectively. Subsequently, 
during training and testing, SRV regards as a negative example any fragment having at least 
min tokens and no more than max tokens that is not afield instance. All such fragments 
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are counted and examined as part of training and testing. Table 5.1 shows the generation 
of examples from a hypothetical fragment. Note that examples overlap densely; a positive 
example typically shares tokens and context with many negative examples. How many 
negative examples are are defined for a learning problem depends in large part on the range 
of field instance sizes observed in the training corpus. 

In discussing the learners described in previous chapters, I have been able to skirt the 
problem of defining the space of negative examples explicitly. In the case of BayeslDF 
the idea of a negative example is mainly implicit; the algorithm works with a set of term- 
frequency tables. Rote and Alergia, on the other hand, only work with positive examples— 
the set of field instances.1 By adopting the paradigm of set-covering algorithms, however, 
we are forced to confront this problem. Even with the fragment-size limitation, the set of 
negative examples for any particular learning problem that SRV faces is typically several 
orders of magnitude larger than the set of positive examples. Much of the challenge of im- 
plementing a learner like SRV lies in developing strategies to cope with this large negative 
set. 

5.1.2   Features 

SRV's induction procedure is based on the notion of features, which are functions over in- 
dividual tokens. Features come in two basic types. A simple feature is a function that maps 
a token to an arbitrary value, which is categorical and usually Boolean.2 An example of this 
kind of feature is capitalized, which takes the value true for any token beginning with a 
capital letter and false otherwise. A relational feature, on the other hand, is a function that 
maps a token to another token in the same document. An example is next_token, which 
returns the token immediately following its argument, or undefined if its argument is the 
last token in the document. 

Note that relational features are what gives SRV its relational character. Each such 
feature encodes one-half of a binary relation. For example, the binary relation 
Succeeds[tokenl, token!) is equivalent to two statements using relational features: 

nextJoken{tokenl) = tokenl 

and 
prevJoken(token2) = tokenl 

In SRV, relational features are used instead of predicates for the sake of convenience and 
efficiency. Not only are they similar in form to simple features, but they also limit SRV's 
searching ability in a way that is reasonable for the information extraction problem. 

:Of course, Rote's statistics count false matches in the training set. The negative examples it must exam- 
ine in this way, however, is determined and strongly constrained by the contents of its dictionary. 

2Simple features may also be set-valued, i.e., they may return a set of values. Imagine, for example, a 
(probably useless) feature that returns all the letters used in a token—the value of letters(Dog) would be 
{'d', 'o', lg'}. SRV is designed to expect such features, but I have only implemented one, wn.word, which 
is discussed later in the chapter. For simplicity, most of the discussion in this chapter assumes categorical 
simple features. 
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Features, as they are understood by SRV, differ in one respect from the features of 
a conventional covering algorithm, such as CN2. In such an algorithm features describe 
aspects of the examples themselves. If the learning problem is to identify storm clouds, 
features such as is_white, distinct-border, and size might be used—all features of clouds. 
In contrast, SRV's features describe aspects of an example's components, the tokens that 
make up the fragment. The fact is, while it might be desirable to invent features of multi- 
token fragments, it is difficult to come up with a satisfactory set of such features. One can 
readily speak of the length of a fragment and its position within a document, but this is only 
a small portion of the information that might be exploited. 

In contrast, token features are easy to define—a fact that facilitates adaptation of an 
algorithm to new domains and new sources of information. Given a token drawn from 
a document, a number of obvious feature types suggest themselves, such as length (e.g., 
single_character_word), character type (e.g., numeric), typography (e.g., capitalized), 
part of speech (e.g., verb), and lexical meaning (e.g., geographicaLplace). Similarly, in 
addition to relational features that encode token adjacency, it is straightforward to encode 
structural aspects of text like linguistic syntax (e.g., subjecLverb) in a form that SRV is 
able to exploit. 

5.1.3   Rule Construction 

S RV constructs rules "top-down;" starting with null rules that cover the entire set of examples- 
all negative examples and any positive examples not covered by already induced rules—and 
adding literals greedily, attempting thereby to cover as many positive examples as possible 
while weeding out covered negative examples. In the discussion that follows, I first present 
example literals in the SRV-specific form used throughout the rest of the chapter, then give 
translations in both first-order logic and English. Note that all SRV literals implicitly refer 
to fragments. In translations I use F to stand for a matching fragments Predicates can be 
instantiated from any of the five following templates. 

• length(Relop, N): Here Relop is one of {<, >, =} and N is an integer. This literal 
asserts that the number of tokens in a fragment is less than, greater than, or equal to 
some integer. For example, the literal 

length(<, 3) 

has the logical meaning 

length(F) < 3 

where the function length returns the number of tokens in F. In other words, it posits 
that only fragments one or two tokens in length should be considered. 

• some(Var, Path, Feat, Value): Var is a variable, Path is a fist of relational features, 
Feat is a simple features and Value is a legal value of Feat. This is a feature-value 
test for some token in the sequence, which is bound to the variable Var. Each distinct 



78      CHAPTER 5. RELATIONAL LEARNING FOR INFORMATION EXTRACTION 

variable in a rule must bind to a distinct token in a matching fragment. In logical 
terms, if SRV has previously introduced the variable A and now, by means of a new 
some-literal, introduces B, there is an implicit assertion of inequality between A 
andB: 

3A e F3B eF.A^BA--- 

An example of the some-literal might be 

some(?A, [ ], capitalized, true) 

which can be rendered in first-order logic as 

3A € F.capitalized(A) = true 

and in English as 

"F contains some token that is capitalized (call it '?A')." 

The Path argument, which is empty in this example, is used to exploit relational 
structure in the domain (see below). Note that every some-literal in the same rule 
using the same token variable is required to refer to the same token. In logical terms, 
each such assertion falls into the scope of the same existential quantifier. Thus, if 
after making the example some-assertion above, the literal 

some(?A, [ ], single_char, false) 

is added to the rule, the following assertion holds: 

3A € F.capitalized(A) = true A single.char{A) — false 

• every(Feat, Value): Feat is a simple feature and Value is a legal value of Feat. 
Every token in a fragment passes some feature-value test. For example, 

every(numericp, false) 

has the logical meaning 

VA G F.numericp(A) = false 

and the English meaning 

"Every token in F is non-numeric." 

• position(Var, From, Relop, N): Var is a variable, From is one of {fromf irst, f romlast}, 
Relop is one of {<, >, =}, and N is an integer. This constrains the position of a to- 
ken bound by a some-literal in the current rule. The position is specified relative to 
the beginning or end of the sequence. Example: 

position(?A, fromf irst, <, 2) 
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In logic this can be rendered as 

3A e F.distJromJirst(A, F) < 2 A • • • 

where dist-from-first is a function counting the number of positions A is from the 
start of the fragment (0 if the first token) and the ellipsis (• • •) stands for whatever 
other assertions have been made about A (one must already have been made). In 
English this literal can be translated as: 

"The token bound to ?A is either the first or second token in the fragment." 

• relpos(Var1, Var2, Relop, N): Var1 and Var2 are variables, Relop is one of {<, >, =}, 
and N is an integer. This constrains the ordering and distance between two tokens 
bound by distinct variables in the current rule. Example: 

re!pos(?A, ?B, =, 1) 

In logic: 

3A e F3B e F.position-diff(B, A) = 1 A • • • 

where position jdiff is a function returning the difference of the position indexes of 
its two arguments, and the ellipsis again stands for previously made assertions about 
A and B. In English: 

"The token bound to ?A immediately precedes the token bound to ?B." 

Relational features are used only in the Path argument to the some predicate. This 
argument can be empty, in which case the some literal is asserting a feature-value test for 
a token occurring within a field, or it can be a list of relational features, in which case it 
is positing both a relationship between a field token and some nearby token, as well as a 
feature-value for the other token. For instance, the assertion 

some(?A, [ ], alLlower_case, true) 

represents the logical statement 

3A (E F.allJower-case(A) = true 

and can be translated in English as 

"the fragment contains some token (?A) that consists entirely of lower-case 
letters." 

In contrast, the assertion 

some(?A, [prev_token prevJoken], all_lower_case, true) 
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corresponds to the logical statement 

3A G F.allJower-case{prevJoken{prevJoken{Ä))) = true 

and can be rendered in English as 

"There is some token in the fragment preceded by a lower-case token two to- 
kens back." 

There is no limit to the number of relational features the learner can string together in this 
way. Thus, it is possible in principle for the learner to exploit relations between tokens quite 
distant from each other. And the same set of simple features which are used to describe 
tokens within a fragment are available to describe extra-fragment tokens. 

The most important function of the path argument is to allow the learner to expand 
its consideration of relevant field structure to the text outside the field instance. These 
relational paths are powerful, but also potentially very costly in terms of search effort. 
SRV Unfits the cost heuristically. At all times during rule construction SRV maintains a set 
of paths (strings of relational features) which are candidates for use in a new some-literal. 
Before the construction of each rule, this set initially contains only the null-path and all 
paths of length one (e.g., [prevJoken]). Whenever SRV actually uses a path by adding 
a some-literal containing it to the rule under construction, it adds to this candidate set all 
paths created by appending all single relational feature to the path it used. In effect, SRV 
grows its consideration of surrounding context outward. The rate of growth is governed 
by how useful it has already found context to be, and how much use it is able to make of 
information contained within positive examples. 

When deciding which literal to add to the rule under construction, SRV uses the same 
gain metric as FOIL. In describing FOIL (Quinlan, 1990), Quinlan defines a function 
which characterizes the information contained in the ratio of positive to negative examples 
in a set of examples: 

I(S) = -\og2(P(S)/(P(S) + N(S))) 

where P(S) and N(S) are the number of positive and negative examples, respectively, in the 
set S. Suppose S corresponds to a set of examples covered by some partially formed rule, 
and let SA stand for the subset of S covered by the rule when the literal A is added. Then 
the gain metric used in SRV and FOIL is: 

Gain(A) = P(SA)(I(S) - I(SA)) 

In order to calculate the gain of candidate literals, the entire set of examples matching the 
current rule must be examined. In practice, this entails loading and scanning each docu- 
ment in the training set. A hash table is used to account for candidate literals; with each 
such literal is associated a record holding two numbers, the number of positive and nega- 
tive examples the literal matches. After processing the training documents and tabulating 
these numbers for each candidate literal, SRV scans the hash table to select one literal 
maximizing the gain criterion. 

Construction of a rule stops if either of two conditions holds: 
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<0.2 6.4.95.11.09.31.hf08+@andrew.cmu.edu.0> 
Type:     cmu.andrew.academic.bio 
Topic:    "MHC Class II: A Target for Specific 

Immunomodulation of the Immune Response" 
Dates:    3-May-95 
Time:     3:30 PM 
Place:    Mellon Institute Conference Room 

TABLE 5.1: An excerpt from the header of a seminar announcement. 

• The rule matches only positive examples (it achieves purity). 

• No literal exists for which the Gain function returns a positive value. 

Often, however, especially after easy patterns have been captured by earlier rules in a train- 
ing session, a rule learner may induce rules that cover very few positive examples. Not 
only is the probable lack of generality of such rules undesirable, but they consume search 
effort without advancing the learner's cause much: If only a single positive example is 
covered by a very large rule and 100 examples remain to be accounted for, then we can 
expect the system to spend its effort on 99 more such large, low-coverage rules. In order to 
avoid this situation, SRV discards any candidate literal that covers fewer than five exam- 
ples. This number is arbitrary. Although I have not experimented with different settings, it 
is a parameter which can be changed. 

5.1.4   An Example 

Consider the problem of identifying the start time of a seminar from an announcement. 
This turns out to be an easy problem for both SRV and, as we have seen in Chapter 3, 
BayeslDF. In contrast with BayeslDF, however, SRV forms hypotheses that are at least 
partially intelligible to humans. In this section I follow the growth of one rule that achieves 
unusually high coverage on the training set. 

In the trace to follow SRV is concerned with learning to extract instance of stime from 
seminar announcements. In the training set there are 161 seminar announcements, in which 
stime is instantiated a total of 325 times—325 positive examples. Instances range from 
one to six tokens in length. The total number of negative examples in the initial pool is 
380,384. Table 5.1 shows an excerpt from the training set containing an instance of stime 
("3:30   PM"). 

The first literal asserted by SRV is intuitively appealing: 

some(?A, [ ], single_digit_p, true) 
Positive: 252 
Negative: 26,405 
Gain: 874.2 
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Literals considered: 52,138 

SRV asserts that start time fragments contain at least one token that consists of a single 
digit. The variable '?A' will stand for this token here and in the rest of the rule. 

The number of positive and negative examples matched by this proto-rule are also 
shown. Note that although the rule now covers 252 positive examples out of an initial 325, 
it still covers a large number of negative examples, as well. To see what these false positives 
look like, consider Figure 5.1. Only a single start time is instantiated here ("3 :3 0 PM"), 
but there are many fragments that match the current rule. The first line (the message ID) 
contains a number of singleton digits, so that, for example, the fragments "26.4." and 
".4.95." match the rule as it now stands.3 Remember also that there is an implicit range 
of candidate fragment lengths, which depends on the observed lengths of training instances 
(1 to 6 in this particular example). The entire message ID line, for example, is not counted 
as a negative example. 

A number of false positives share tokens with the single true positive example in the 
excerpt. In general, we can distinguish between two closely related problems an extrac- 
tion system must solve: locating field instances and identifying boundaries. Sometimes 
a single literal is enough to exclude all text not in the immediate proximity of some field 
instances. Even in such cases, however, additional literals are required to exclude all but 
one of the cloud of overlapping fragments that surround a field instance. In our example, 
such matching fragments include ":   3 :" and "3:30   PM Place". 

The next literal fixes the position of the singleton digit. It must occur at the beginning 
of the fragment: 

some(?A, [ ], single_digit_p, true), 
position(?A, fromfirst, <, 1) 
Positive: 252 
Negative: 7649 
Gain: 442.1 
Literals considered: 1569 

Not surprisingly, this literal does not sacrifice any positive examples, but it filters out a 
large number of negative examples. Now, although the false positive "3:30 PM Place" 
still matches, the fragment": 3 :" no longer does. 

A new variable is introduced by the third literal, and a relational feature is used: 

some(?A, [ ], single_digit_p, true), 
position(?A, fromfirst, <, 1), 
some(?B, [prev_token], word,":") 
Positive: 244 
Negative: 2374 
Gain: 377.5 
Literals considered: 2031 

3Note, however, that a token such as "95" will not bind to '?A'. Thus, there are only three tokens in the 
message ID that are responsible for false positives. 
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The word feature returns the original token with all upper-case characters converted to 
lower case. This literal says, "the fragment contains some token (other than the one bound 
to '?A') that is preceded by a colon." Note that although the '3' in the start time in Figure 5.1 
is also preceded by a colon, this literal does not refer to it. Recall that distinct variables 
must bind to distinct tokens. Because the '3' is bound to the '?A' variable, '?B' must bind 
to a different token—the '30' token in this case. 

After three literals the set of matching negative examples has been vastly reduced. The 
only false positives in Figure 5.1 are those associated with the start time and sharing the 
same initial token ('3'). To reach the current, relatively small number of false positives, we 
have had to sacrifice eight of the positive examples matched by the initial literal. These are 
presumably single-token start times, as in, "The seminar will be held at 1." Interestingly, 
although only two tokens are bound, the three literals together require that a matching 
fragment contain at least three tokens. Because the singleton digit must be the first token, 
the colon that precedes the token bound to '?B' must also be part of the start time. Also, 
all remaining negative examples in the excerpt in Figure 5.1 are those beginning with the 
fragment "3 : 3 0". 

The next literal places an upper bound on the length of matching fragments: 

some(?A, [ ], single_digit_p, true), 
position(?A, fromfirst, <, 1), 
some(?B, [prev_token], word,":"), 
length(<, 5) 
Positive: 220 
Negative: 585 
Gain: 341.4 
Literals considered: 1074 

Following this literal, only fragments containing three or four tokens are considered. 
The fifth literal illustrates the growth of relational paths: 

some(?A, [ ], single.digiLp, true), 
position(?A, fromfirst, <, 1), 
some(?B, [prevJoken], word,":"), 
length(<, 5), 
some(?A, [prevJoken, prev_token], quadrupletonp, true) 
Positive: 163 
Negative: 197 
Gain: 118.7 
Literals considered: 1055 

This literal says, "the token two tokens before ?A (the singleton digit that starts the frag- 
ment) is exactly four characters long." Because begins rule construction only considering 
relational paths of no more than length one, and extending the set of candidates only when 
relational paths are actually used, the path [prevJoken, prevJoken] was not available 
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when construction began on this rule. Only after the third literal, which used the rela- 
tional feature prevJoken, was this path available. And following the use of this path, all 
three-feature paths starting with [prev_token prev_token] are also candidates. This literal 
appears to generalize two common labels used to introduce start times in the collection, 
"Time:", as in Figure 5.1, and "When:". 

The sixth literal posits an additional token, thereby restricting attention to fragments of 
length four: 

some(?A, [ ], single_digit_p, true), 
position(?A, fromfirst, <, 1), 
some(?B, [prev_token], word,":"), 
length(<, 5), 
some(?A, [prevJoken prevJoken], quadrupletonp, true), 
some(?C, [ ], doubletonp, true) 
Positive: 88 
Negative: 2 
Gain: 91.1 

The meaning of this literal is, "the fragment contains some token '?C containing exactly 
two characters." Because the only other doubleton token in the start time in Figure 5.1 is 
already bound to ?B, the variable introduced by this literal ('?C') can only bind to 'PM'. 

Two false positives remain to be filtered out. Fortunately, a literal is available to remove 
them without sacrificing any field instances: 

some(?A, [ ], single_digit_p, true), 
position(?A, fromfirst, <, 1), 
some(?B, [prevJoken], word,":"), 
length(<, 5), 
some(?A, [prevJoken, prevJoken], quadrupletonp, true), 
some(?C, [ ], doubletonp, true), 
some(?A, [prevJoken, prevJoken, prevJoken], all_lower_case, false) 
Positive: 88 
Negative: 0 
Gain: 2.9 
Literals considered: 998 

This literal means, "the token three tokens before '?A' (the first token in the fragment) is 
not a token consisting entirely of lower-case alphabetic characters." 

At this point construction of the rule halts. No further improvements are possible, 
because purity has been achieved—no negative examples are matched. This rule can be 
rendered in first-order logic as: 
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94 Time: 3:00 PM PostedBy: 

- 12: 

PostedBy: 

PostedBy: 

valdes 
92 Time: 9:00 AM 

92 Time: 5:00 PM Saul 
92 Time: 7:00 PM Career 

, 1995; 3 30 pm - 5: 

DOHERTY  HALL   1212 7:00   PM    *** 

FIGURE 5.2: Some start times that match the learned rule (carriage returns removed but 
other whitespace preserved). 

stime(F)   «-   length(F) < 5 

A    (3A, B,CeF.A^B^C 

A single .digit-p (A) = true 

A quadrupletonp(prevJoken(prevJoken(A))) = true 

A allJower„case{prevJoken(prevJoken(prevJoken(A)))) 

A distJrom-first(A, F) < 1 

Aword(prevJoken(B)) = ' : ' 

A doubletonp(C) = true) 

■ false 

The rule is stored as part of the output hypothesis, all field instances it matches are removed 
from further consideration, and construction of a new rule is begun. 

SRV has successfully recognized one particularly common pattern of start time: fully 
specified times ending with the token 'PM' or 'AM'. Figure 5.2 shows a few of the 88 
matching examples from this particular training session. In order to distinguish seminar 
start times from other times listed in the announcements, SRV has relied on the text which 
precedes instances: Start times are preceded by a token that does not consist of two al- 
phabetic characters, and the token preceding this token contains exactly four characters. It 
probably would not occur to a human being to express rules in exactly this way. Indeed, 
although most of the fragments matched by this rule are preceded by the two-token label 
"Time:", Table 5.2 shows two field instances for which this is not true. Nevertheless, these 
two fragments are not singular; there are other cases in the set of matching examples where 
a start time is preceded by a year or a location containing the word "hall." Thus, without 
encompassing any kind of semantic understanding, SRV has exploited domain regularities 
that enable it to perform quite effectively. 
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5.1.5 Rule Accuracy Estimation 

The final training step is rule validation. A randomly selected portion (one-third, in this 
case) of the training data is set aside for validation prior to training. For each rule learned 
during the training step, the number of matches and correct predictions on the validation 
set is tabulated. These numbers are used subsequently to estimate a rule's accuracy. 

In order to get as much out of the training data as possible, it is randomly partitioned 
into three sets of equal size. Each of these sets is then used as the validation set for rules 
learned on the remaining two-thirds of the data. This yields three independently trained 
and validated rule sets, which are then concatenated to form the final classifier. 

At testing time, associated with each rule are two counts: the number of times it 
matched any fragment in the validation set, and the number of times it correctly matched. 
The rule's confidence is an m-estimate (Cestnik, 1990), based on these two numbers, of 
the probability that the rule is correct, given that it matches a fragment.4 All candidate 
fragments in a test document are compared with all rules to look for a match. If at least 
one matching rule is found, SRV predicts that the fragment is a field instance and returns a 
confidence with this prediction. This confidence is a combination of the confidences of all 
matching rules. Suppose C is this set of confidence scores. The combined confidence is: 

^combined — -t        J_J^ V C) 
ceC 

In other words, the rules are treated as independent predictors. Although this independence 
assumptions is not justified by the training regime, I have found that this approach works 
better than only taking the largest confidence in C. 

5.1.6 Implementation 

Table 5.2 presents SRV's function for growing a single rule. Starting with an empty rule 
(line 2), SRV iteratively adds the single literal that maximizes its gain metric. Most of this 
rule growth occurs in the While-loop of the function GrowRule (fines 13 through 23). 
For reasons that will be discussed in this section, however, the function called to find the 
first literal in the rule (FirstLit eral, line 8), differs from the main function for finding 
literals (NextLi t eral, line 14). Before proceeding with a discussion of the search for lit- 
erals, note how the set of candidate relational paths is handled in Gr owRul e. Initialized to 
contain all paths of length zero or one (lines 3 through 6), it is augmented any time a some- 
literal is added to the rule (fines 11 and 21). The Function AugmentCandidatePaths 
iteratively appends each relational feature in relational.f eats to each path in 
candidate_paths; any resulting path not already in the set candidate_paths is 
added to it. 

In order to perform top-down rule induction for information extraction, attention to 
efficiency is important. A naive search for an individual literal would involve evaluating 

4I set m to 3 in experiments involving SRV. 
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1 Function GrowRule(fieldname, docs, simple_feats, relational_feats) 
2 rule = empty rule 
3 . candidate_paths = [ the empty path  ]     /*  Singleton list containing empty path */ 
4 For feat in relational_feats 
5 AddToList(MakeSingletonPath(feat), candidate_paths) 
6 End For 
7 
8 literal = FirstLiteral(fieldname, docs, simple_feats, candidate_paths) 
9 AddToList(literal, rule) 
10 path = PathOfSomeLiteral(literal) 
11 candidate_paths = AugmentCandidatePaths(candidate_paths, path) 
12 
13 While MatchesNegativeExamples(fieldname, docs, rule) 
14 literal = NextLiteral(rule, fieldname, docs, simple_feats, candidate_paths) 
15 If literal = null /* Failed to find a literal */ 
16 Exit While 
17 End If 
18 AddToList(literal, rule) 
19 If LiteralType(literal) = some 
20 path = PathOfSomeLiteral(literal) 
21 candidate_paths = AugmentCandidatePaths(candidate_paths, path) 
22 End If 
23 End While 
24 Return rule 
25 End Function 

TABLE 5.2: SRV's rule-growing algorithm in pseudocode. 

the effect of every candidate literal on every legal fragment. If we are at the beginning of 
search (i.e., no literals asserted and no positive examples covered), this entails counting 
each one of approximately n(max — min) fragments in a single file, where n is the number 
of tokens the file contains, and min and max are the minimum and maximum legal fragment 
sizes, respectively. 

SRV embodies a number of implementation strategies that make search through such 
a large space efficient. A critical feature of this problem is that examples exist in implicit 
form in documents on disk. Moreover, because they overlap, this is their most efficient 
representation; enumerating examples and storing them as a group in main memory is not 
feasible with typical memory sizes. Consequently, the primary consideration in an efficient 
implementation is minimizing file I/O. 

The core of any greedy general-to-specific symbolic learner is a linear scan of examples, 
and for each example, a linear scan of available assertions. If a; is the number of examples 
and a is the number of assertions, this means that 0(ax) work is required for each assertion 
added to a rule. In general, whether to scan examples or assertions in the inner loop may 
be of little consequence; for information extraction, however, it is important that examples 
be scanned in the outer, assertions in the inner loop. Because scanning examples entails 
fetching data from disk, we want to perform it only once per added assertion, rather than 
once per candidate assertion. 

When analyzing the training data to determine which literal to add to a rule, SRV 
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1 Function NextLiteral(rule, fieldname, docs, simple_feats, candidate_paths) 
2 Variable positive_hash, /* Tables mapping to integers ... */ 
3 negative_hash /* ... all entries initially zero */ 
4 vars = VariablesUsed(rule) 
5 newvar = variable not  in  vars 
6 For doc in docs 
7 bound = Table mapping tokens in  doc to vars in  rule 
8 For fragment in MatchingFragments(doc, rule, bound) 
9 If IsFieldlnstance(fieldname, doc, fragment) 
10 hash = positive_hash 
11 Else 
12 hash = negative_hash 
13 End  If 
14 SearchForLengthLits(fragment, hash) 
15 For var in vars 
16 SearchForSomeSpecializations(fragment, bound, simple_feats, 
17 candidate_paths, hash) 
18 End For 
19 SearchForNewSomeLits(fragment, newvar, bound, simple_feats, 
20 candidate_paths, hash) 
21 SearchForEveryLits(fragment, simple_feats, hash) 
22 For var in vars 
23 SearchForPositionLits(var, fragment, bound, hash) 
24 End For 
25 For varl in vars 
26 For var2 in vars 
27 If Not varl = var2 
28 SearchForRelposLits(fragment, bound, hash) 
29 End If 
30 End For 
31 End For 
32 End For /* matching fragments */ 
33 End For /* documents */ 
34 Return FindBestLiteral(positive_hash, negative_hash) 
35 End Function 

TABLE 5.3: SRV's procedure for finding all but the first literal in a rule. 

performs its analysis in this order: 

1. Each training document is loaded. 

2. Each legal fragment in a document is analyzed. 

3. The appropriate count (positive or negative, depending on the fragment) is incre- 
mented for each candidate literal that matches this fragment. 

Table 5.3 presents pseudocode for the function NextLiteral, which implements this 
strategy. Enumerating fragments (Step 2 above) is a computationally intensive process. To 
make it more efficient, SRV exploits the overlap between examples by pre-calculating 
token-specific information in Step 1. For example, during Step 1 SRV calculates and 
caches the values of all features for every token in a document. Once this is done, ev- 
ery token is annotated with the variables in the current rule to which it can be bound (line 7 
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in Table 5.3). Using these annotations, it is possible to screen out many fragments quickly 
and avoid the expensive process of unification. For example, if a fragment has no token 
that binds to the variable ' ?A', or if it has fewer tokens than the number of distinct variables 
in the current rule, SRV can quickly decide to disregard it. 

Once this preprocessing is performed, every fragment that matches the current rule is 
examined and, for each such fragment, every legal literal accounted for (lines 8 through 
32). Two hash tables, positiveJhash and negativeJhash, record the number of 
times each literal is associated with positive and negative examples, respectively (lines 9 
through 13). 

The actual search for literals is dispatched to several procedures, one for each type of 
literal (lines 14 through 28). Each of these procedure has the same basic functionality: 
All legal literals of the respective type are generated, and the count associated with each is 
incremented in the appropriate hash table. The specific functionality of each function is as 
follows: 

• SearchForLengthLits. Recall that length literals have the form length(Relop, N). 
For every legal combined assignment to Relop (one of {<, >, =}) and N, the count 
for the corresponding length-literal is incremented in the hash table. The range of 
legal lengths N is determined by the range of training instance lengths and by any 
length-literals already added to the current rule. 

• SearchForSomeSpecializations. Generates and accounts for all some- 
literals that are true for the current fragment and that use a variable introduced by 
a previous some-literal. Given a variable var, every token that can bind to it is 
quickly found using the table bound. For each such token, every combination of a 
path in candidate_paths and a simple feature in simple_feats corresponds 
to one or more some-literals, depending on whether the particular feature takes a 
single value or a set of values. For all distinct some-literals generated in this way 
for the current fragment, the corresponding count in hash is incremented. 

• SearchForNewSomeLits. Like SearchForSomeSpecializations, only 
it considers introducing a new variable. Recall that SRV requires that distinct vari- 
ables bind to distinct tokens. Thus, where SearchForSomeSpecializations 
iterates over tokens that can bind to a given variable, this function iterates over any 
token in the current fragment that is unbound in some legal binding of the variables 
currently used in the rule (the variable var s). The table bound facilitates the search 
for such tokens. 

SearchForEveryLits. Generates and accounts for all legal every-literals. For 
each feature in simple_feats, if all tokens in the current fragment share some 
value of this feature, a literal is generated. 

SearchForPosit ionLits. Given a variable var in use in the current rule, this 
procedure generates and accounts for all legal position-literals using var. 
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1 Function FirstLiteral(fieldname, docs, simple_feats, candidate_paths) 
2 Variable positive_hash, /* Tables mapping to integers ... */ 
3 negative_hash /* ... all entries initially zero */ 
4 For doc in docs 
5 For feat in simple_feats 
6 values = AllValuesInDoc(doc, feat) 
7 For value in values 
8 For path in candidate_paths 
9 tokens = TokensWithPathValue(doc, path, feat, value) 
10 For token in tokens 
11 If TokenlnField(token, fieldname, doc) 
12 pcount = 1 
13 Else 
14 pcount = 0 
15 End If 
16 ncount = NonOverlapNegativeCount(token, tokens) 
17 literal = "some(?A, path, feat, val)" 
18 positive_hashliteral = positive_hashliteral + pcount 
19 negative_hashliteral = negative_hashliteral + ncount 
20 End For /* tokens */ 
21 End For   /* paths */ 
22 End For /* feature values */ 
23 End For /* simple_feats */ 
24 End For /* docs */ 
25 Return FindBestLiteral(positive_hash, negative_hash) 
26 End Function 

TABLE 5.4: SRV's procedure for finding the first literal in a rule. 

• SearchForRelposLits. Given any pair of distinct variables varl and var2 
in use in the current rule, this procedure generates and accounts for all legal relpos- 
literals using varl and var2. 

We cannot use variable bindings to quickly screen out candidate fragments at the begin- 
ning of rule construction, as is done in FindNextLiteral, because no variables have 
introduced. In Heu of this, however, we can speed up fragment scanning in another way: 
If we restrict our attention to some-literals, we can assess the effect of a particular literal 
without enumerating fragments. Suppose during search for the initial literal in a rule we 
have encountered a token that binds to '?A' in the literal: 

some(?A, [ ], numericp, true) 

In other words, the token consists of numerals. Suppose also that '?A' does not bind to 
any tokens in the proximity. Because we know the range of legal fragment sizes, we can 
calculate the number of fragments of which this token is a component and increment the 
appropriate counts for this literal, without looking at each fragment explicitly. 

Because this strategy affords such a speed-up when the space to be searched is largest, 
and because variables introduced by some-literals are so beneficial for search efficiency, 
SRV uses the heuristic just described and requires that the first literal in each rule be a 
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some-literal. The function FirstLi t eral, depicted in Table 5.4, implements this strat- 
egy. Note that in order to avoid over-counting the number of fragments that match a literal, 
we must modify our calculations slightly if another numeric token occurs in close enough 
proximity to the one we are considering. The function NonOverlapNegativeCount 
(line 16) does this. Given a particular path-feature-value test applicable to token, it re- 
turns the number of fragments of which token is a part without counting fragments that 
include subsequent tokens to which this test also applies. Note also that this strategy is gen- 
erally no longer applicable once a rule is non-empty, since whether a token is a component 
of any candidate fragments may depend on whether nearby tokens also satisfy a rule. 

5.1.7   Time Complexity 

In terms of time SRV is the most expensive of the learners I describe in this thesis. Its 
running time is 0(1 ■ M ■ D ■ R ■ F) where: 

• / is the number of instances of the target field in the training set. 

• M is the size in tokens of the largest training field instance. 

• D is the number of documents. 

• R is the number of relational features. 

• F is the number of simple features. 

To arrive at this figure I make a number of assumptions: 

1. The average size of a rule produced by SRV is a constant. The average rule size 
varies with the learning problem—rules are typically longer for harder problems— 
but there is no way to calculate it from SRV's inputs. 

2. The size of the smallest training field instance is typically a small number that does 
not vary much from problem to problem. In my experiments this number was usually 
1 or 2. My analysis, therefore, treats it as a constant. 

3. The expense of searching for some-literals dominates that of searching for any other 
type of literal. 

4. The expense incurred by expanding the set of candidate relational paths is more than 
offset by reductions in rule size and greater rule coverage. This analysis assumes that 
the set of candidate relational paths does not grow during rule construction, and that 
its size remains equal to one plus the number of relational features. 

This section presents a derivation of SRV's time complexity. 
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Let TtraininR represent SRV's training time. Ttraining is linear in the number of rules 
SRV induces. Because no rule is allowed that covers no field instances, the number of rules 
is at most the number of field instances. We have, therefore: 

-* training = -* ' *■ rule 

where / is the number of training field instances and Tru\e is the time SRV takes to con- 
struct a single rule. 

The cost of inducing a single rule depends on the number of literals it contains. If L is 
the number of literals in a rule, then: 

* rule =     '   literal 

In practice, there is no way to determine from the inputs how large L will be, other than 
to run SRV. We may speak of the average L over the set of rules learned in a training 
session, but this, too, is impossible to determine a priori. I assume, therefore, that rule 
size is approximately constant across learning problems (Assumption 1 above). With this 
assumption, L is a constant, and: 

Trule   =   0(Tliteral) 

-* training   =   ^\^ ' ^ literal> 

Because finding a literal involves examining each example that matches the current rule 
and, for each such example, generating the set of literals applicable to it: 

Tliteral = 0(X ■ C) 

where X is the number of examples and C is the number of candidate literals. The number 
of examples X depends on the range of legal fragment sizes. Let us make the simplifying 
assumption that the minimum legal size is fixed (Assumption 2 above). Because every frag- 
ment starting at a given token having up to the maximum number of tokens is an example, 
X is approximately the product of this maximum size M and the number of tokens in the 
training collection. If we posit that the number of tokens is proportional to the number of 
documents D in the collection we have: 

X   <x   M-D 

^literal   =   0(M ■ D ■ C) 

Ttraining   =   0(1 ■ M ■ D ■ C) 

The number of candidate literals C depends on a number of factors, including the size 
of the set of candidate relational paths, the number of different variables used in the literals 
of the current rule, and the number of examples the current rule covers. These factors, 
however, are consequences of the current state of the search and do not depend directly on 
any input to SRV. In contrast, two factors do directly influence C: F, the number of simple 
features, and R, the number of relational features. Recall that the some-predicate has the 
form: 
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some(Var, Path, Feat, Value) 

Given a particular assignment to Feat and Value, the number of candidate some-literals 
is the number of elements in the set of candidate relational paths, which is (R +1) initially. 
Similarly, fix Path, and there are at least F candidate some-literals, one for each possible 
assignment to Feat. 

With growing F and R many more some-literals will be examined than any other type 
of literal. The number of length-literals, position-literals, and relpos-literals is sensitive 
to the range in field instance lengths (i.e., to M), but it does not take many features, simple 
or relational, for the number of some-literals to dominate (Assumption 3). Thus, it is not 
too great a simplification to say: 

C   <x   R-F 

literal   =   O(M-D-R-F) 

draining   =   0(I-M-D-R-F) 

One question I do not address in this analysis is the effect of growing relational paths 
(Assumption 4). If SRV finds that the path [prevJoken] is useful and uses it in a some- 
literal, it supplements the set of candidate paths with R new ones, in effect creating a 
potentially significant number of new candidate some-literals. Thus, whereas before any 
such path is used SRV considers on the order of RF literals, after one application it now 
has approximately 2RF literals to consider. In general, it must consider 0(K • R • F) 
literals, where K is the number of distinct relational paths used in some-literals in the 
current rule. 

The actual impact of R on the running time of SRV depends on qualities of the par- 
ticular problem that are difficult to scrutinize. If relational features never prove useful in 
learning a given field, this growth in the number of candidate literals is not a factor. In 
practice, even when the set of candidate paths has grown large, the costs of literal evalua- 
tion are more than offset by reduced example sets. In other words, relational features tend 
to pay for themselves by allowing SRV to screen out large numbers of negative examples 
quickly. Nevertheless, it is important to give careful thought to the number and kinds of 
relational features to use for a particular problem. 

5.2   Experiments 

I have experimented with SRV in a number of domains. Here, I present results of ex- 
periments in three of them: the seminar announcements, a collection of Web pages from 
university computer science departments, and a collection of newswire articles on corporate 
acquisitions taken from the Reuters document collection (Lewis, 1992). 

For the purposes of comparison with other algorithms described in the thesis, the sem- 
inar announcement experiments are the most relevant. The other two domains, however, 
serve as illustrations of SRV's extensibility. Adapting SRV for use in these domains only 
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word 
singletonp 
doubletonp 
tripletonp 
quadrupletonp 
longp 
single_char_p 

single.digiLp 
double_char_p 
double_digit_p 
triple_char_p 
triple_digit_p 

long_char_p 
long_digit_p 
capitalized-p 
all_upper_case_p 
all_lower_case_p 

punctuationp 
hybrid_anum_p 
a_then_num_p 
num_then_a_p 
multi_word_cap_p 
prevJoken quadruple_char_p   numericp 

quadruple_digit_p    sentence-punctp    nextJoken 

TABLE 5.5: SRV's default features. 

involves adding several domain-specific features to its default feature set: features that 
exploit HTML, in the case of the Web pages; features that reflect syntactic and lexical in- 
formation, in the case of the acquisition articles. Each such feature is implemented as a C 
function, which is compiled into SRV. 

The comparison of SRV with other algorithms favors SRV. SRV's performance is 
best on most of the fields. On the few fields on which SRV does not perform best, its 
performance is close to best. 

5.2.1    Case Study: Seminar Announcements 

Experiments with SRV in the seminar announcements domain followed the same regime as 
in previous chapters. The same five partitions of the document collection as in Chapters 3 
and A—half for training, half for testing—were used to train and test SRV. Performance 
numbers are averages over the five iterations. 

Table 5.5 shows the token features that were made available to SRV in these experi- 
ments. The word feature returns the literal token, modulo capitalization—unless the token 
occurs fewer than five times in the training set, in which case it returns the value *un- 
known*. Here, longp means longer than four characters in length. Except for prevJoken 
and nextJoken, which are relational, each of these features is a simple feature. The set 
of simple features is exactly the same as that used in alphabet transduction in Chapter 4. 
Because all of the features in the figure are applicable in any domain, I call this SRV's 
"default" feature set. 

Figures 5.3 through 5.6 show rules learned by SRV for the speaker, location, stime, and 
etime fields, respectively. Each rule is the one from the first train/test partition achieving the 
highest validation score; in fact, all four rules had no false matches. The relative difficulty 
of each field is reflected in part by the number of validation examples the corresponding 
rule matches: The speaker rule matched 9, the location rule 15, the stime rule 46, and the 
etime rule 33 validation examples. The equivalent of each rule in first-order logic is also 
shown in each table. At the bottom of each Table is a matching fragment. Below each such 
fragment are positioned the variables used in the rule, each one below the token to which 
it binds. Recall that the word feature returns *unknown* if a token occurs fewer than five 
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speaker :- 
some(?A, [ ], word, 'unknown*), 
every(capitalizedp, true), 
length(=, 2), 
some(?B, [ ], word, 'unknown*), 
some(?B, [prev.token], word,":"), 
some(?A, [next-token], doubletonp, false), 
every(quadruple.char_p, false), 
some(?B, [prev.token prev.token], word, "who") 

speaker(F)     <-    length(F) = 2 
A     (\A4 € F.capitalizedp(F) = true 

A quadruple-char^(A) = true) 
A     (3A, BeF.AjtB 

A word(A) = 'unknown* 
A doubletonp(nextJoken(A)) = false 
A word(B) = 'unknown* 
A word(prevJoken(B)) = ' : ' 
/\word{prevJoken(prevJoken(B))) = 'who') 

Fragment F is a speaker if: 
F contains a novel token (A); and 
every token in F is capitalized; and 
F contains exactly two tokens; and 
F contains another novel token (B); and 
B is preceded by a colon; and 
A is not followed by a two-character token; and 
every token in F does not consist of 

exactly four alphanumeric characters; and 
two tokens before B is the word "who" 

Who: Toshinari Takahashi <takahasi@. 
?B ?A 

FIGURE 5.3: A rule learned by SRV to recognize instances of the speaker field, its first- 
order logic equivalent, its English translation, and a fragment of text it matches. 

location :- 
some(?A, [ ], word "hall"), 
length(=, 3), 
every(quadrupletonp, true), 
some(?B, [ ], quadruple_digit.p, true), 
position(?A, fromlast, =, 1) 

location(F)     «-     length(F) = 3 
A      (VÄ € F.quadrupletonp(A) = true) 
A     (3A,BeF.A^B 

Aword(A) = 'hall' 
A quadruple-digit-p(B) = true 
A dist.fromJast(A, F) = 1) 

Fragment F is a location if: 
F contains the word "hall" (A); and 
F contains exactly three tokens; and 
every token in F consists of exactly four characters; and 
F contains a four-digit token (J3); and 
A is the next-to-last token 

Location: Wean Hall 4601 
?A  ?B 

FIGURE 5.4: A rule learned by SRV to recognize instances of location, its equivalent in 
first-order logic, its English translation, and a matching fragment with variable bindings. 
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stime :- 
some(?A, [prev_token], word,":"), 
position(?A, fromfirst, =, 2), 
some(?A, [prev.token prev.token], numericp, true), 
length(<, 5), 
some(?B, [prev.token prev.token], quadrupletonp, true), 
some(?C, [ ], word, "pm"), 
some(?B, [prev.token], singletonp, true) 

stime(F)     <-     length(F) < 5 
A     (3A,B,CeF.AytB^C 

A word(prev.token(A)) = ' : ' 
A numericp(prevJoken(prevJoken(A))) = true 
A quadrupletonp(prevJoken(prevJoken(B))) = true 
A singletonp(prevJoken(B)) = true 
Aword(C) = 'pm') 

Fragment F is a stime if: 
F contains a token (A) preceded by a colon; and 
A is the third token in F; and 
two tokens before A is a numeric token; and 
F contains fewer than five tokens; and 
F contains a token (B), two tokens before which 

is a four-character token; and 
F contains the word "pm" (C); and 
B is preceded by a single-character token 

Time: 5:00   PM 

?B ?A   ?C 

FIGURE 5.5: A rule learned by SRV to recognize instances of stime, its equivalent in 
first-order logic, its English translation, and a matching fragment. 

etime :- 
some(?A, [ ], double.digit.p, true), 
position(?A, fromfirst, =, 2), 
some(?A, [prev.token], word,":"), 
some(?B, [prev.token prev.token], word,"-"), 
length(<, 5), 
some(?C, [ ], double.char.p, true), 
some(?C, [ ], all.lower.case, false) 

etime(F)     •£-     length(F) < 5 
A     (3A,B,C eF.AyLB^C 

A double-digit.p{ A) = true 
Aword(prevJoken)(A) = ' : ' 
A dist-from-first(A) = 2 
A word(prevJoken(prevJoken(B))) 
A double-charjp{C) = true 
A alUower-case{C) = false) 

Fragment F is an etime if: 
F contains a two-digit token (A); and 
A is the third token in F; and 
A is preceded by a colon; and 
F contains a token (B), two tokens before which 

is a hyphen; and 
F contains fewer than five tokens; and 
F contains a two-letter token (C); and 
C does not consist entirely of lower-case letters 

Time; 3:30 5:00   PM 
?B?A  ?C 

FIGURE 5.6: A rule learned by SRV to recognize instances of etime, its equivalent in 
first-order logic, and a matching fragment. 
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Fl 
speaker 

Prec Rec 
] 

Fl 
ocatior 
Prec Rec Fl 

stime 
Prec Rec Fl 

etime 
Prec Rec 

Rote 12.1 55.1 6.8 70.6 90.1 58.1 73.9 74.8 73.0 53.6 53.1 54.1 
BayesIDF 29.7 41.8 23.0 61.3 66.3 57.0 98.2 98.2 98.2 92.3 94.6 90.1 
BayesGl 52.4 60.6 46.1 71.4 79.1 65.0 96.3 98.5 94.1 89.9 96.5 84.0 
SRV 58.4 60.9 56.1 73.3 82.2 66.1 98.4 98.4 98.3 94.1 98.4 90.1 

TABLE 5.6: Peak Fl scores, with corresponding precision and recall, for all methods on 
all seminar announcement fields. 

spej 
Prec 

iker 
Rec 

loca 
Prec 

tion 
Rec 

start time 
Prec    Rec 

end time 
Prec    Rec 

Rote 55.1 6.8 89.5 58.1 13.1 73.4 31.4 71.6 
BayesIDF 28.8 27.4 57.3 58.8 98.2 98.2 46.8 95.7 
BayesGl 46.0 53.3 68.1 66.6 94.4 94.2 39.7 84.8 
SRV 54.9 58.3 73.8 69.5 98.4 98.3 66.7 92.6 

TABLE 5.7: Precision and recall of all methods on all seminar announcement fields. 

times in the training set 

Tables 5.6 (peak Fl scores) and 5.7 (precision and recall) compare all four learners 
developed so far in terms of performance on the four seminar announcement fields. Recall 
that Fl scores in bold face show the best learner with 95% confidence. Figures 5.10 through 
5.13 (at the end of the chapter) depict the same performance results with precision/recall 
graphs. In all cases, SRV is among the best methods, and in the case of speaker and 
location it is to be preferred. Table 5.6 makes this clear; SRV achieves the best peak 
Fl score on all fields. (Recall that the peak score is calculated by choosing the point 
on the precision/recall curve for which the Fl score is maximized.) Note that BayesGl is 
competitive with SRV on all fields. This is in spite of the poor performance of the canonical 
acceptor in isolation, and the relative weakness of BayesIDF on the speaker and location 
fields. 

5.2.2   Case Study: Web Pages 

Because it makes no special assumptions about document characteristics, SRV can be used 
"out of the box" for extraction from Web pages. Given only its default feature set, it will 
learn effective rules. In most cases, however, in order to maximize its performance it needs 
access to information reflecting the HTML-specific structure in a page. In this section, I 
describe an experiment in the definition of features to reflect this information. 
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inJitle inJist in_center after_p table-next^col 
in_a in_tt in_strong after_li tablejprev-col 
in_h in_table in_em afterJd table-next-row 
in_h1 in_b in_emphatic afterJh table-prev.row 
in_h2 inJ after_br after_td_or .th table-row'.header 
in_h3 inJont afterJir tablejcoLheader 

TABLE 5.8: HTML features added to SRV's default feature set. Features in italics are 
relational. 

Feature Definition 

The purpose of most HTML tags is to define a scope over parts of the text visible to the 
user. One way of rendering such information in a form usable by SRV is to associate a 
Boolean feature with each kind of tag. For tokens occurring within the scope of a tag, the 
corresponding feature returns true; for tokens occurring outside the scope, it returns false. 
For example, to the <title> tag we can assign a feature, "in_title," the value of which is 
false except for words occurring in a page's title field. Note that this approach does not treat 
tags themselves as tokens, but as features of the text that is actually visible. (This is in part 
a consequence of the document representation shared by all learners. Refer to Appendix C 
for a discussion of this representation.) 

In addition to tags that define scopes, HTML allows for a number of tags that can be 
used to delimit without enclosing, such as <li> and <p>. I defined a Boolean feature 
for each of these. In contrast with features defined for enclosing tags, these features return 
true only for the single token immediately following the corresponding tag. The after_p 
feature, for example, returns true only for tokens at the beginning of text blocks initiated 
with <p> tags. 

Tables are a frequently used presentation device in HTML. In order to understand a 
table entry, it may be necessary to examine entries in adjacent rows or columns, or to read 
the row or column header. I defined a number of relational features which allow SRV to 
navigate tables in this way. These features, along with all the other features defined for 
these experiments, are shown in Table 5.8. Each such feature maps to the first token in the 
corresponding table cell. For example, the feature table_row_header returns the first token 
in the row header cell. 

Domains 

The document collection used in the Web page experiments was assembled as part of the 
World Wide Knowledge Base (WebKB) project (Craven et al, 1998). As part of prelimi- 
nary experiments, WebKB sampled a large number of pages from four university computer 
science departments: Cornell University, University of Texas, University of Washington, 
and University of Wisconsin. Each such page was manually assigned to one of several 
disjoint classes. 
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I sampled pages from two of the WebKB classes—101 pages from the course class, 96 
from the research project class—and annotated instances of five fields: 

• crsTitle, the title of a course in a course page 

• crsNumber, the official number of a course in a course page 

• crslnst, the names of any instructors and teaching assistants in a course page 

• projTitle, the project title in a project page 

• projMember, the names of any members and alumni of a project in a project page 

Additional details about this domain are available in Appendix A. 

Methodology and Evaluation 

Two separate experiments were conducted, one each for the course and project page collec- 
tions. In each experiment I followed the same regime as in experiments with the seminar 
announcements: five random partitions of a collection into training and testing sets of equal 
size. 

Two of the fields in this corpus, course instructor and project member, violate the "one- 
field-per-document" (OPD) assumption that underlies the performance metrics used so far 
in this thesis. Each of these two fields usually has multiple distinct instantiations in a single 
document. The course instructor field was defined to include teaching assistants; thus, 
in a typical course page at a large university several people qualify as course instructors. 
Similarly, a research project usually has multiple members, all of which are listed on its 
official page. I call such fields "many-per-document" (MPD) fields. 

Given a MPD field the central question cannot be whether a learner's top prediction 
identified a field instance. Instead, we want to know what fraction of the field instances 
it identified, and what fraction of its predictions identified a field instance. Therefore, 
for MPD fields, Recall is the fraction of all field instances covered by some prediction. 
Precision is the fraction of all predictions that covered some field instance. 

Results 

Table 5.9 shows the peak Fl scores achieved by all learners, including SRV with HTML 
features, on the OPD fields. Table 5.10 shows the precision and recall (at full recall) on 
the same fields. And Figures 5.14 through 5.16 (located at the end of the chapter) present 
the full precision/recall curves. It is immediately apparent from these results that SRV 
achieves stronger performance than the other learners in general. The only field for which 
this is not obviously true is crsNumber, for which the performance of BayesGI is slightly 
better. 

Peak Fl scores for the MPD fields are shown in Table 5.11, precision and recall at 
full recall are shown in Table 5.12, and the full precision/recall curves are presented in 
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crsNumber 
Fl     Prec    Rec Fl 

crsTitle 
Prec Rec 

projTitle 
Fl     Prec    Rec 

Rote 33.1 70.8 21.6 32.3 52.1 23.4 15.0 39.1 9.3 
BayeslDF 58.2 60.2 56.4 47.7 56.8 41.1 11.7 13.6 10.3 
BayesGI 89.9 89.5 90.3 39.6 57.0 30.4 17.1 17.8 16.5 
SRV (default) 86.7 86.2 87.3 35.6 38.4 33.2 8.8 8.4 9.3 
SRV (HTML) 87.2 86.3 88.1 55.9 83.3 42.1 33.7 41.7 28.4 

TABLE 5.9: Peak Fl scores of three learners on the three "one-per-document" fields from 
the Web domain. 

crsNu 
Prec 

imber 
Rec 

crsl 
Prec 

Itle 
Rec 

Proj' 
Prec 

ntie 
Rec 

Rote 70.8 21.6 44.3 23.8 37.5 9.3 
BayeslDF 56.4 59.7 38.0 44.4 10.6 12.9 
BayesGI 85.2 90.3 31.2 36.4 14.0 17.0 
SRV (default) 84.1 87.3 33.0 34.6 7.7 9.3 
SRV (HTML) 84.0 89.0 45.7 50.0 26.3 31.4 

TABLE 5.10: Precision and recall of all learners, including SRV with HTML features, on 
the three OPD fields of the WebKB domain. 

Fl 
crslnst 
Prec Rec 

pn 
Fl 

)jMem 
Prec 

Der 
Rec 

Rote 20.4 71.8 11.9 21.4 76.4 12.4 
BayeslDF 32.8 30.8 35.1 18.8 19.6 18.0 
BayesGI 48.1 50.3 46.0 35.4 41.3 31.0 
SRV (default) 37.6 36.2 39.2 34.8 32.8 37.0 
SRV (HTML) 42.9 49.1 38.0 41.4 44.2 39.0 

TABLE 5.11: Peak Fl scores of all learners, including SRV with HTML features, on the 
two "many-per-document" fields from the WebKB domain. 
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crslnst 
Prec    Rec 

projMember 
Prec     Rec 

Rote 71.8 11.9 74.8 11.4 
BayesIDF 8.7 48.3 15.4 19.1 
BayesGl 7.7 59.6 23.7 38.4 
SRV (default) 20.6 53.2 26.2 35.2 
SRV (HTML) 21.6 55.9 30.0 41.0 

TABLE 5.12: Precision and recall of all learners, including SRV with HTML features, on 
the "many-per-document" fields of the WebKB domain. 

Figures 5.17 and 5.18 at the end of the chapter. While SRV performs best on only one of 
these fields {projMember; BayesGl performs better on crslnst), its results on crslnst are 
nevertheless competitive with those of BayesGl. Note, too, that BayesGl suffers a sharp 
drop in precision at the high-recall end of its curve for crslnst in Figure 5.17. 

A comparison between SRV with and without HTML features strongly favors the ver- 
sion with the features. In this domain there is clear evidence that SRV can exploit genre- 
specific information. 

5.2.3   Case Study: Newswire Articles 

To this point I have only presented results for domains in which linguistic analysis is dif- 
ficult or impossible. However, there is no reason why Rote, BayesIDF, and SRV cannot 
be applied to linguistically well-structured domains. While Rote and BayesIDF, as im- 
plemented, will ignore any linguistic structure, SRV is poised to exploit it. In this section, 
I relate an experiment in which these three learners are applied to a domain consisting 
of newswire articles on corporate acquisitions. A central question addressed in these ex- 
periments is how well SRV can make use of the linguistic information provided by two 
off-the-shelf NLP packages, one a syntactic parser, the other a semantic lexicon. 

Linguistic Syntax: the Link Grammar Parser 

Syntactic information is provided by the link grammar parser (Sleator and Temperley, 
1993). This parser takes a sentence as input and returns a complete parse in which terms 
are connected in typed binary relations ("links") which represent syntactic relationships. I 
mapped each such link to a relational feature: A token on the right side of a link of type X 
has a corresponding relational feature called left_X that maps to the token on the left side 
of the fink. In addition, several non-relational features, such as part of speech, are derived 
from parser output. 

Figure 5.7 shows part of a link grammar parse and its translation into features. The 
tokens "Corp" and "said" share an S-link, which is used to connect the subject of a clause 
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+ G + G + — Ss-+-Ce-+Ss*b+ 

I        I        I      I     I     I 
First Wisconsin Corp said.v it plans.v 

^ 

token: Corp 
lg_tag: nil 
lg_pos: noun 

token: said 
lg_tag: "v" 
lg_pos: verb 

token: it 
r_tag: nil 

lg_Pos: noun 

sleft_C 
right_S- 

FIGURE 5.7: An example of link grammar feature derivation. 

with the main verb. There are two relational features that correspond to the S-line, righLS 
and lefLS. The value of right.S for the "Corp" token is the "said" token; similarly, a lefLS 
feature points from the "said" token to the "Corp" token.5 Based on the output of the parser 
shown in the figure, we can infer that the "Corp" token is a noun; lg-pos, a simple feature 
representing part of speech, takes the value noun for this token. The parts of speech of 
other tokens are inferred in a similar way. 

Lexical Semantics: Wordnet 

My object in using Wordnet (Miller, 1995) is to enable SRV to recognize that the phrases, 
"A bought B," and, "X acquired Y," are instantiations of the same underlying pattern. Al- 
though "bought" and "acquired" do not belong to the same "synset" in Wordnet, they are 
nevertheless closely related in Wordnet by means of the "hypernym" (or "is-a") relation. 
To exploit such semantic relationships I created a single token feature, called wn_word. In 
contrast with features already outlined, which are mostly boolean, this feature is set-valued. 
For nouns and verbs, its value is the set of all synsets in the hypernym path to the root of the 
hypernym tree in which a word occurs. For adjectives and adverbs it is a cluster of closely 
related synsets. In the case of multiple Wordnet senses, I used the most common sense of 
a word, according to Wordnet, to construct this set. 

Figure 5.8 displays the hypernym path from one sense of the noun "acquisition" to the 
root of the hierarchy to which it belongs. The value of the wn_word feature for "acquisi- 
tion" would therefore be: 

wn_word("acquisition") = { acquisition, deed, accomplishment, action, act } 

5Note that a feature such as lefLS can be queried even for tokens not connected by S-links. The value 
of such a feature is undefined. Thus, by predicating on this undefined value, SRV can exploit the absence 
of specific links. For example, in Figure 5.7 the value of lefLS for the token "Wisconsin" is undefined, 
because this token is not attached to any S-link. 
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acquisition, acquiring, getting -- (the act of contracting 
=> deed, feat, effort, exploit -- (a notable achieve 

=> accomplishment, achievement -- (the act of ac 
=> action -- (something done (usually as opp 

=> act, human action, human activity -- 

FIGURE 5.8: One sense of the word "acquisition" and all its generalizations in Wordnet. 

where each word in the set stands for the Wordnet synset to which it belongs. Suppose that 
SRV needed to merge the words "acquisition" and "completion." The wn_word feature 
might be used thus: 

some(?A, [ ], wn_word, "accomplishment") 

Because the synset to which "accomplishment" belongs is a generalization of both "acqui- 
sition" and "completion," this literal would hold for fragments containing either word. 

Domain 

To construct the domain for these experiments, I sampled 600 articles belonging to the 
"acquisition" category in the Reuters corpus (Lewis, 1992) and tagged them for ten fields, 
nine of which are used in these experiments. Fields include those for the official names of 
the parties to an acquisition (acquired, purchaser, seller), as well as their short names 
(acqabr, purchabr, sellerabr), the location of the purchased company or resource (acqloc), 
the price paid (dlramt), and any short phrases summarizing the progress of negotiations 
(Status). The fields vary widely in length and frequency of occurrence, both of which have 
a significant impact on the difficulty they present for learners. For more details on this 
domain, please refer to Appendix A. 

Results 

Table 5.13 gives the peak Fl scores of Rote, BayeslDF, and SRV, both with and with- 
out linguistic features on nine of the acquisitions fields. Table 5.14 presents the precision 
and recall of the same learners. Figures 5.19 through 5.27 (end of chapter) show the full 
precision/recall curves. It is evident from these results that the acquisitions domain poses 
a considerably suffer challenge for all the learning methods than either the seminar an- 
nouncements or the Web pages. Lacking are the clear signals provided by simple presenta- 
tional devices, as in the seminar announcements, or HTML structure, as in the Web pages. 
The acquisition articles do contain highly conventional language in many cases. In order 
to perform well, however, it appears that some representation of the semantic content of 
the articles is required. For example, SRV does relatively well at identifying companies, 
but often the patterns it exploits are too weak to disambiguate instances of acquired from 
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Fl Free Rec Fl Prec Rec Fl Prec Rec 
acquired purchaser seller 

Rote 18.9 66.5 11.0 17.4 43.9 10.8 17.2 41.7 10.8 
BayeslDF 20.2 21.7 19.0 39.5 40.0 39.0 28.5 28.9 28.0 
SRV 38.5 42.7 35.0 45.1 47.4 43.0 23.4 21.3 26.1 
SRVIng 37.8 39.8 36.0 44.2 48.0 41.0 23.1 19.6 28.0 

acqabr purchabr sellerabr 

Rote 17.0 37.5 11.0 13.5 9.0 26.4 9.8 15.7 7.1 
BayeslDF 29.8 34.8 26.0 47.4 47.8 47.0 31.8 29.0 35.1 
SRV 38.1 37.0 39.2 48.5 44.7 53.0 25.1 20.7 32.1 
SRVIng 42.7 40.5 45.0 49.9 45.6 55.0 22.6 17.0 34.0 

acqloc status dlramt 
Rote 10.3 10.6 10.0 49.6 50.3 49.0 48.7 67.4 38.1 
BayeslDF 20.7 24.1 18.1 41.3 43.9 39.0 52.6 58.2 48.0 
SRV 22.3 22.7 22.0 47.0 59.1 39.0 61.8 66.1 58.1 
SRVIng 21.7 21.3 22.0 47.2 57.4 40.0 60.6 56.8 65.0 

TABLE 5.13: Peak Fl scores, and corresponding precision and recall, of Rote, BayeslDF, 
SRV, and SRV augmented with linguistic features on nine of the acquisitions fields. 

Alg 
Prec Rec Prec Rec Prec Rec 

acquired purchaser seller 
Rote 59.6 11.2 43.9 10.8 41.7 10.8 
BayeslDF 19.8^ 20.0 36.9 40.4 15.6 38.7 
SRV 38.4 37.5 42.9 45.9 16.3 33.6 
SRVIng 38.0 36.6 42.4 44.6 16.4 32.8 

acqabr purchabr sellerabr 
Rote 22.1 12.0 16.8 9.4 9.8 7.8 
BayeslDF 23.2 32.1 39.6 52.9 16.0 51.5 
SRV 31.8 43.8 41.4 55.0 14.2 42.8 
SRVIng 35.5 48.3 43.2 57.0 14.7 42.6 

acqloc status dlramt 
Rote 6.4 12.4 42.0 50.7 63.2 38.8 
BayeslDF 7.0 23.6 33.3 43.6 24.1 54.5 
SRV 12.7 29.4 39.1 44.7 50.5 69.8 
SRVIng 15.4 28.8 41.5 46.5 52.1 68.5 

TABLE 5.14: Precision and recall at full recall of Rote, BayeslDF, SRV, and SRV aug- 
mented with linguistic features on nine of the acquisitions fields. 
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instances of purchaser. To perform such disambiguation it might be necessary to analyze 
the semantics of a sentence in order to sort out the respective roles of the companies it 
contains. 

It is surprising that BayeslDF does as well as it does. On several fields the results 
argue for a preference of BayeslDF over either version of SRV. Note, however, that these 
experiments used an early version of SRV which included no every-predicate. Subsequent 
experiments on this domain (to be presented in the next chapter) show that availability of 
the every-predicate lifts SRV's performance above that of BayeslDF.6 

SRV is able to use the linguistic features to good effect in some cases—particularly 
on the acqabr field. Figure 5.9 presents a rule for learned for acqabr in which both link 
grammar and Wordnet features are used. The AN-link connects a noun modifier with the 
noun it modifies. In the fragments in the figure, both "Trilogy" and "Roach" are connected 
to "shares" by such a link. In Wordnet "possession" is a hypernym of "stock." The fact that 
the relational paths [right_AN] and [right_AN prev .token] both point to words belonging to 
the same hypernym path in Wordnet indicates the presence of a Wordnet collocation. The 
path to the top of the hypernym tree is shown below the collocation "treasury shares" in the 
figure. Note how two of the synsets on this path are used in the rule, first the more general 
"possession," then the more specific "stock." In effect, the linguistic literals in this rule 
stipulate that an acqabr fragment should be a noun used to modify a two-word collocation 
meaning "stock." 

Overall, however, the introduction of linguistic information appears to have little effect 
on SRV's performance. We might expect the relational features derived from the link 
grammar to help by giving SRV access to non-local syntactically meaningful patterns. 
Instead, it seems that patterns found by following the default relational features are just as 
powerful. Similarly, we look to Wordnet to help SRV generalize over synonyms, but the 
results suggest that the language of the articles is stylized enough that synonymy is not a 
problem for SRV without lexical information. 

I conducted a three-fold experiment to investigate the effect of each kind of linguistic 
information, syntactic and lexical. In one case, SRV was trained with all the hnk-grammar 
features but without wnj/vord. In another, it was given wn_word but no link-grammar 
features. As Figure 5.15 shows, results are mixed. For some fields, such as acqabr, both 
syntactic and lexical information appear to provide some benefit, combining to yield even 
better performance than either alone. For others, such as dlramt, either component alone 
results in worse precision than the combination at the same or worse recall For still others, 
such as purchaser, it seems that any kind of linguistic information provides at best marginal 
benefit. 

It would seem then that SRV cannot consistently turn additional features into stronger 
performance. Although it is not entirely clear why this is so, two candidate reasons suggest 
themselves. First, it may be that SRV's strong local bias, its search from small fragments 

6Because the experiments involving linguistic features were inordinately expensive in terms of time (in 
part due to many syntactic relational features) and yielded mediocre results, I have not re-run them with the 
every-predicate. 
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acqabr :- 
some(?A, [ ], capitalized, true) 
length(<, 2) 
some(?A, [next-token], allJower.case, true) 
some(?A, [prev_token], all_lower_case, true) 
some(?A, [rightAN], wn.word, "possession") 
some(?A, [right-AN prev_token], wn.word, "stock") 
some(?A, [prevJoken prevJoken], doubleton, false) 

acqabr(F)     4-     length(F) < 2 
A     (3A € F.capitalized(A) = true 

A attJower-case(nextJoken(A)) = true 
A all-lower.case[prevJoken(A)) = true 
A 'possession' £ wti-\vord(right-AN(A)) 
A 'stock' e wn-Word(prevJoken(right-AN(A))) 
A doubleton(prevJoken(prevJoken{A))) = false) 

Fragment F is an acqabr if: 
F contains a capitalized token (A); and 
F contains fewer than two tokens; and 
A is followed by a lower-case token; and 
A is preceded by a lower-case token; and 
A is connected by an AN-link to a token 

with the Wordnet meaning "possession"; and 
A is connected to a token, which is preceded by a token 

with the Wordnet meaning "stock"; and 
two tokens before A is a token that does not consist 

of exactly two characters 

-AN-- 

to purchaser 4.5 mln Trilogy common shares at 

acquired another 2.4 mln Roach treasure shares 

possession 

FIGURE 5.9: A learned rule for acqabr that uses linguistic features, along with two frag- 
ments of matching text and relevant linguistic information. 
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purchaser 
Prec    Rec 

acqabr 
Prec    Rec 

dlramt 
Prec    Rec 

status 
Prec    Rec 

Rote 44.2 10.6 22.4 11.1 59.3 33.7 38.5 47.5 
BayeslDF 35.8 39.3 24.3 32.5 22.6 53.8 31.8 41.9 
SRV (def) 41.8 44.8 33.9 45.3 49.2 71.4 38.4 45.2 
SRV (ling) 42.2 44.5 37.6 49.4 52.3 67.6 39.7 46.2 
SRV (lg) 42.4 45.2 35.3 46.9 41.6 67.6 34.8 41.1 
SRV (wn) 41.4 44.4 34.9 45.7 47.3 64.2 38.7 44.3 

TABLE 5.15: Precision and recall results from a three-fold experiment on four fields for the 
three basic learners, plus SRV with syntactic and lexical information (SRV (ling)), SRV 
with only syntactic information (SRV (lg)), and SRV with only lexical information (SRV 
(wn)). 

outwards, renders linguistic information less useful than it otherwise might be. Soder- 
land, in the first investigation into learning rules for information extraction, took complete, 
parsed sentences as his example representation (Soderland, 1996). Of course, this repre- 
sentation is difficult or impossible for some of the domains I investigate. Where appro- 
priate, however, it constitutes a powerful bias. At the least, it provides more context in 
which to look for linguistic patterns. The second possible reason for SRV's inconsistency 
is noise. Both of the NLP packages have limited coverage and are not tuned to the ac- 
quisitions corpus. Consequently, it is almost inevitable that some of the information they 
produce is incorrect. My hypothesis that learning would nevertheless find useful signal in 
their output was not born out by the experiments. 

5.3   Discussion 

By all measures, SRV is the best of the learning algorithms for information extraction 
described in this thesis. While it does not perform the best on all fields—on a few it is 
second best—it is the most consistently strong performer. The relational learning paradigm 
gives it great flexibility in the kinds of patterns it can express. In contrast with BayesGI, 
which uses token features in a processing step separate from the primary induction step, 
SRV's use of such features is a direct part of its search for good extraction patterns. 

And SRV is able to make good use of features that reflect genre-specific information. 
When its default, domain-independent feature set is augmented with HTML-specific fea- 
tures, SRV shows substantial performance gains. This is perhaps the most attractive aspect 
of SRV, aside from its comparatively strong performance. It is useful in a wide range of 
domains, and its usefulness in any particular domain can be increased with the aid of a few 
suitably designed features. 

Note, however, that although SRV almost always performed better than the other learn- 
ers, it did not solve any new fields outright. Those fields for which its performance is es- 
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FIGURE 5.10: Precision/recall plot comparing all four learners on the speaker field from 
the seminar announcement domain. 

sentially perfect are also those fields effectively solved by simpler learners. In most cases 
there is plenty of residual error left if SRV's performance, even if there is less of it than for 
other learners. The next chapter shows how to take steps toward reducing this error. 
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FIGURE 5.21: Precision/recall plot comparing all four learners on the seller field for the 
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FIGURE 5.25: Precision/recall plot comparing all four learners on the acqloc field for the 
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FIGURE 5.26: Precision/recall plot comparing all four learners on the dlramt field for the 
acquisitions domain. 
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Chapter 6 

Multistrategy Approaches 

In only a few of the problems explored so far does any single learner reach 
very high performance levels. Each individual learner is limited, among other 
things, by the representational choices it embodies. This chapter asks whether 
these limitations complement each other and, if so, how a system working with 
all learners might benefit. A framework is presented for combining the learn- 
ers without reference to the details of their implementations. For each learner, 
the relationship between the confidence of a prediction and the probability that 
it is correct is modeled using regression. This chapter presents two ways of 
building these regression models and three ways of combining learners' pre- 
dictions. The best of these three combining methods almost always (except on 
one field of the fourteen tested) yields better precision and higher recall than 
the best of the individual learners. 

The experimental results presented in the preceding chapter lead, I think, to two basic 
conclusions: 

• All things considered, SRV is the best of the four learners. Its approach of dis- 
junctively learning multiple sub-patterns fits the nature of the problem well, and the 
flexibility with which it handles abstract features makes it both powerful and conve- 
nient. 

• Strictly speaking, however, there is no single best learner. SRV does not perform 
best on all fields. Even Rote outperforms competing learners in some cases. 

Something like SRV, therefore, is an attractive candidate if a single algorithm is sought 
for a set of information extraction problems. Ideally, however, choosing a learner should 
depend on the individual task. 

119 
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Rote BayeslDF BayesGI SRV 
Rote 1 0.22 0.12 0.09 
BayeslDF 0.81 1 0.40 0.30 
BayesGI 0.93 0.85 1 0.66 
SRV 0.81 0.68 0.72 1 

TABLE 6.1: Outcome contingency table for the speaker field showing the probability that a 
row learner handled a document correctly, given that a column learner handled it correctly. 

6.1    Opportunity 

But is the best we can hope for—to choose a single, most appropriate learner for each task? 
As this chapter will show, the answer is "no." Even if SRV performed best on all fields, 
there might still be room for improvement by using "weaker" learners to compensate for 
SRV's blind spots. Consider the performance of Rote on the location field. Although 
Rote does not achieve the recall levels reached by other learners on this field, there is some 
subset of location instances for which it is to be trusted over other learners. The question 
is how to know when to trust it. 

The idea presented in this chapter is to use the confidence of a learner in deciding 
whether or not to trust it. Provided that a learner is well-behaved—provided that high 
confidence means greater probability that a prediction is correct—we should lend greater 
credence to a learner's high confidence predictions. If Rote predicts with high confidence 
that a fragment is a location, we probably should accept the prediction, even over conflict- 
ing predictions from SRV. 

The basic approach followed in this chapter is to gather predictions from all learners 
for a particular document and decide which prediction is best by looking at the confidences 
associated with the predictions. Of course, in order for this to work we need the learners to 
complement each other. In other words, do the top-performing approaches for a given field 
show the same behavior on a document-by-document basis? Is it the case that they find a 
common performance ceiling, beyond which it is hard to climb with the available features? 
Does the best learner simply subsume the others, predicting correctly on all documents for 
which they predict correctly? If so, then the best we can probably do is to select the most 
consistent learner. If, on the other hand, individual learners solve different parts of the 
problem space, then there is hope for performance superior to that achieved by any single 
learner. 

Table 6.1 suggests that, in the case of the speaker field, such improvement is indeed 
possible. In the table, if R is the row learner and C is the column learner, then the entry 
in (R, C) is the probability that R handled a document correctly, given that C handled it 
correctly. It shows a lack of agreement among learners on a surprisingly high fraction of 
documents. Performance numbers shown for SRV and BayesGI may leave the misleading 
impression that their document-by-document behavior is similar.  This table shows that 
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FIGURE 6.1: Combining predictions of different learners for a hypothetical location frag- 
ment. 

it clearly is not. In fact, of the 757 documents for which at least one of these learners 
predicted correctly, only 399 were handled correctly by both. If we possessed an oracle for 
this field which, in every case where the two learners disagreed, told us which of the two to 
trust, we could achieve 68% precision at 73% recall. Compare this with the performance 
of SRV, which manages 54% precision at 58% recall. And surprisingly, the oracular figure 
is not necessarily an upper bound. Both SRV and BayesGI make predictions which have 
confidence levels that are too low to figure in the results. In cases where top predictions 
from both learners disagree and are both wrong, they may be issuing predictions of lower 
confidence which agree on the correct fragment. Thus, although both individual learners 
may be wrong, it may be possible nevertheless to combine them for a correct prediction. 
Figure 6.1 depicts this graphically. Each box style in the figure is intended to represent a 
different learner. By combining evidence from multiple learners (e.g., the predictions made 
for "BH 3 03"), we can compensate for the mistakes of individual learners. 

6.2    Combining Methods 

Given a document, how then should we decide among predictions returned by diverse learn- 
ers? This section presents one way of making this decision. Regression over predictions 
made by learners on a validation set is used to map confidences to probabilities, i.e., to nor- 
malize them into the range [0,1]. This makes it possible to compare predictions made by 
different learners directly. The interesting question is what to do with two predictions that 
agree, that refer to the same fragment. How should we compute the probability to assign 
to such a fragment based on the estimates we calculate for the individual predictions? This 
section three different methods for making this computation. 
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FIGURE 6.2: The basic combination scheme. 

6.2.1   Basic Scheme 

We cannot assume that prediction confidences bear any resemblance to true probability 
of correctness, or that they are comparable across learners. For example, while Rote's 
predictions do appear to be good estimates, BayeslDF's confidences are large negative 
log probabilities. We do assume, however, that probability of correctness increases with 
increasing confidence for all learners. The basic idea, therefore, is to attempt to compute a 
mapping for each learner from confidence to probability of correctness. Figure 6.2 shows 
this in outline. Regression models based on learner performance on hold-out sets are used 
to map raw confidence scores to probabilities. The combiner uses these probabilities to 
order all predictions. The specific steps involved in this procedure are: 

1. Validate performance on a hold-out set. Reserve a part of the training set for 
validation. After training each learner, store its predictions, with confidences, on the 
hold-out set. 

2. Use regression to map confidences to probabilities. Based on the learner's per- 
formance on the hold-out set, attempt to model how its performance varies with 
confidence. What is modeled, and the kind of regression used, depends on the com- 
bination method. 

3. Use the regression models and calculated probabilities to make the best choice 
on the test set. Re-train all the learners on the full training set. Given the re-trained 
learners and the corresponding models, decide for each document which is best of all 
the fragments selected by any of the learners. 

I have experimented with three basic methods of combination. The first two, which I will 
call CMax and CProb, both attempt to work with regression models that map directly from 
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1 Function CProbHandleDocument(doc) 
2 allpreds = All predictions made by all  learners  for  doc 
3 scores = Empty hash  table 
4 For pred in allpreds 
5 frag = Fragment  the prediction identifies 
6 conf = Original  confidence of  pred 
7 learner = Learner that  issued  pred 
8 model = learner's regression model 
9 est = MapConfidenceToEstimate(model, conf) 
10 If frag is not  in  scores 
11 scores{frag} = 0 
12 End If 
13 scores{frag} = 1 - (1 - scores{frag})(1 - est) 
14 End For 
15 Sort fragments in  scores iest to worst 
16 Return Sorted fragments 
17 End Function 

TABLE 6.2: The function used by CProb to process a test document. 

confidence to probability of correctness. The third, which I will call CBayes, uses Bayes' 
Rule to make combination decisions. 

6.2.2   Regression to Estimate Correctness 

If a learner's confidence numbers are meaningful, then the probability that a prediction is 
correct will increase with increasing confidence. CMax and CProb use linear regression 
to model the rate at which this probability increases. For a given learner, the range between 
the lowest and highest confidence predictions seen on the validation set is divided into 10 
intervals of equal size. Predictions are then distributed into 10 bins, depending on which 
interval they fall into. Once all predictions have been collected from a learner, the bins are 
used to generate ten datapoints (x, y) for regression, where x is the midpoint of an interval 
and y is the ratio in the corresponding bin of number of correct predictions to total number 
of predictions. Linear regression over these datapoints then completes the modeling step. 

Given a field, the regression step yields one line equation for each individual learner. 
The confidence of any prediction by a learner on a test fragment is now converted to a 
probability estimate by means of the respective equation. If a test fragment has drawn only 
a single learner's prediction, then the output confidence is simply this estimate. The inter- 
esting question is what to do with predictions from multiple learners for a single fragment. 

I experiment with two methods that are based on these linear regression models. One 
method,CMax simply takes the largest estimate as the official one. Given Pi, the esti- 
mates computed for each of the predictions on a fragment, CMax's combined estimate is 
maxj Pi. In contrast, the other method, CProb, is predicated on the assumption that the 
fact that two or more learners agree on a prediction provides more information than either 
prediction alone. If we assume that two probability estimates of an event, Pa and P&, are 



124 CHAPTER 6. MULTISTRATEGY APPROACHES 

independent, then the combined probability is the probability that they are not both wrong, 
i.e., 1 - (1 - Pa)(l - Pb). CProb's estimate is based on this assumption. Given a set of 
probability estimates Pu its estimate for the combined probability is 1 - Ili(l — Pi)- Ta- 
ble 6.2 presents pseudocode for CProb's document handling procedure. The procedure for 
CMax is identical, except for line 13. In CMax, this line would assign to the hash entry 
the maximum of the current entry and the computed estimate. 

6.2.3   Bayesian Prediction Combination 

Although CProb may exploit the availability of predictions from multiple learners better 
than CMax, it still leaves something to be desired. In particular, it ignores some of the 
available information, such as the frequency with which a learner tends to predict at a 
given confidence level and any notion of prior probabilities. 

The final combination method attempts to apply Bayes' Rule, which tells us how to 
maintain our probability estimates in response to incoming data. Using Bayes' Rule offers 
two advantages over CProb: It allows us to incorporate priors into our estimates, and it 
tells us how to maintain our hypothesis space so that the resulting estimates are closer to 
true probabilities—an advantage in terms of the accuracy-coverage trade-off. 

Here, a hypothesis Hi takes the form, "the fragment at this place in the document is a 
field instance" Let PAi = C be the event, Learner A predicted fragment i is afield instance 
with confidence C. For each fragment i chosen by any of the learners, we maintain two 
hypotheses explicitly, Hi and ->Hi. Individual learner predictions PAi = C are treated as 
events which cause us to update hypotheses. We want, therefore, to model Pr(PAi = C\Hi) 
and Pv(PAi = C|->i?i). It is more convenient, however, to model the event PAi >= C, 
i.e., the probability of a prediction with confidence at least C. Modeling the cumulative 
probability yields better statistics and allows us to avoid the arbitrary decisions inherent in 
binning. 

CBayes uses exponential regression to model these two probabilities, i.e., we perform 
linear regression on pairs of the form (x, log(y)), where a: is a confidence level, and y is 
the cumulative probability of seeing a prediction for a fragment given that it either is or 
is not a field instance. As an example, consider the problem of creating the "positive" 
model Pr(PAi >= C\Hi) for some learner A. Let F be the total number of field instances 
in the validation set, and let GA{C) be the number of field instances identified by Learner 
A with predictions having confidence equal to or greater than C. For every prediction made 
by Learner A, we add a regression datapoint (x, log(y)), where x is the confidence of the 
prediction and y = GA(x)/F. The "negative" model Pr(PAi >= c\->Hi) is constructed in 
the same way, except over non-field-instance fragments—any fragment in the validation 
set identified by any of the learners. Note that exponential regression is used only because 
it clearly worked better than linear regression in early experiments. I have not tried any 
other alternatives, however, so there is ample reason to believe that the results reported for 
CBayes can be improved. Any modeling method that yields more accurate models for 
this data should lead to improved performance. In particular, logistic regression is a likely 
candidate. 
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1 Function CBayesHandleDocument(doc) 
2 allpreds = All predictions made by all  learners for  doc 
3 FIscores = Empty hash   table 
4 notFIscores = Empty hash  table 
5 For pred in allpreds 
6 frag = Fragment  identified by  pred 
7 learner = Learner that  issued  pred 
8 learnerPrior = LearnerPrior(learner) 
9 If learnerPrior > FIscores{frag} 
10 FIscores{frag} = learnerPrior 
11 notFIscores{frag} = 1 - learnerPrior 
12 End If 
13 End For 
14 For pred in allpreds 
15 frag = Fragment  identified by  pred 
16 conf = Original  confidence of  pred 
17 learner = Learner that  issued  pred 
18 
19 /* Update field-instance hypothesis  * I 
20 
21 Flmodel = learner's FI-conditional regression model 
22 Flest = MapConfidenceToEstimate(Flmodel, conf) 
23 FIscores{frag} = FIscores{frag} * Flest 
24 
25 /* Update not-field-instance hypothesis * I 
26 
27 notFImodel = learner's not-FI-conditional regression model 
28 notFIest = MapConfidenceToEstimate(notFImodel, conf) 
29 notFIscores{frag} = notFIscores{frag} * notFIest 
30 
31 /* Normalize two hypotheses */ 
32 
33 total = FIscores{frag} + notFIscores{frag} 
34 FIscores{frag} = FIscores{frag} / total 
35 notFIscores{frag} = notFIscores{frag} / total 
36 
37 End For 
38 Sort fragments by score in  FIscores, best   to worst 
39 Return sorted fragments and corresponding FIscores 
40 End Function 

TABLE 6.3: The function used by CBayes to process a test document. 
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With each prediction, we use the two models associated with a learner to adjust the pos- 
terior probabilities of the two mutually exclusive hypotheses regarding the affected frag- 
ment, always normalizing so they sum to 1. Table 6.3 shows pseudocode for this procedure. 
Each fragment in a test document that has been selected by at least one learner is assigned 
an entry in each of the hash tables FIscores and notFIscores. The number stored 
in this entry is the current estimate that the prediction does and does not identify a field 
instance, respectively. These scores are initialized with a prior that reflects our overall trust 
in a learner (lines 5 through 13)—the number of times the learner identified a field instance 
divided by the number of times the learner made any prediction on the validation set. 

Processing of individual predictions is handled in the second for-loop (lines 14 through 
37). In response to a particular prediction and confidence, the appropriate model is used 
to update the corresponding field-instance hypothesis (lines 21 through 23) and not-field- 
instance hypothesis (lines 27 through 29). Finally, the two hypotheses are normalized to 
sum to one (lines 33 through 35). As for CProb and CMax, the set of fragments are sorted 
according to their new estimates and returned. 

6.3   Experiments 

I experimented with the three combining methods on 14 fields from the three domains. 
With each field and for each learner, the modeling step involved withholding one third of 
the training documents for validation/regression and training the learner on the remaining 
two thirds. The hold-out set was fixed for all learners and all fields in a given domain. All 
four learners we have introduced in this thesis—Rote, BayeslDF, BayesGI, and SRV— 
were used as input to each combining method. For experiments with the WebKB fields, 
SRV was provided with the HTML-specific features which earlier experiments showed 
improve its performance in that domain. For the acquisitions fields SRV used its default 
feature set, but in contrast with the experiments in this domain presented in Chapter 5, it 
also had access to the every-predicate. This boosted its performance on all acquisitions 
fields. 

Table 6.4 compares the peak Fl score achieved by each method with the score of the 
best individual learner according to this metric. The scores in bold face have a slightly 
different meaning than in previous Fl comparisons. In each case, the best individual learner 
is compared with the best combining method. If the better of the two is indeed better with 
95% confidence, it is shown in bold. With a few exceptions, all combining methods yield 
better performance than the best individual learner. In only once case (crsNumber) does the 
best individual learner (BayesGI) outperform all combining methods, and the difference 
between its performance and that of the best combining methods for this field (CBayes) is 
statistically insignificant. 

Note that this is also the only field on which any individual learner outperforms CProb, 
which is the most consistent of the three combining methods. In some cases, the improve- 
ment returned by CProb is marginal, in others it is quite substantial. On a couple of fields, 
it returns approximately 8 points improvement. Recall that the Fl measure represents a 
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speaker location stime etime 
Best individual 58.3 73.7 98.5 94.0 
CMax 61.5 79.3 97.3 92.4 
CProb 66.2 79.7 99.3 94.3 
CBayes 65.9 76.2 98.5 90.7 

acquired purchaser acqabr dlramt status 
Best individual 40.7 47.9 39.6 60.8* 50.9** 
CMax 43.7 49.1 38.9 61.8 52.0 
CProb 45.6 53.0 43.1 64.3 58.6 
CBayes 45.8 49.8 41.1 61.6 59.5 

crsNumber crsTitle projTitle crslnst projMember 
Best individual 89.9* 55.9 33.7 48.1* 41.1 
CMax 87.9 58.2 33.8 44.2 43.0 
CProb 88.9 62.0 34.1 49.8 45.5 
CBayes 89.4 64.5 34.1 52.6 47.2 

TABLE 6.4: Peak Fl scores of the multistrategy approach compared with that of the best 
individual learner (SRV in all cases, unless marked (*) for BayesGI or (**) for Rote). 

mean of precision and recall. Thus, if a baseline learner achieves 50% precision and 50% 
recall, then an 8-point jump in the Fl score might correspond to 58% precision and 58% 
recall. If there is no change in precision, this same jump represents an improvement to 69% 
recall. In either case, a substantial reduction in error has been achieved. 

Although CMax is clearly an adequate approach, and although it manages to outper- 
form the best individual learner on 9 of the 14 fields, it is the worst of the three approaches. 
CBayes, on the other hand, is a little harder to assess. True, it performs worse than the 
best individual learner on more fields than CProb. Still, on the WebKB fields it appears 
to be the method of preference, yielding the highest performance on all five WebKB fields. 
On one field (projTitle), it improves over the best individual learner by almost 9 points. 

It is perhaps not too difficult to say why the performance of CBayes is best on these 
particular fields, though exploiting the insight is difficult. The most salient difference be- 
tween the WebKB fields and the others is their data sparsity. For each such field a learner 
is given access to approximately 50 documents, in contrast with 240 and 300 documents 
for the seminar announcement and acquisitions fields, respectively. One third of these 
documents are used for regression—which leads to a comparatively small number of data 
points. It appears that assumptions implicit in the particular kinds of regression performed 
as part of CBayes are more appropriate for smaller data sets, i.e., that more data hurts the 
performance of CBayes. Obviously, the details of regression, as used for all combining 
methods, need closer inspection. By the same token, these inconsistencies give us reason 
to believe that, with more appropriate model construction, the performance of CProb or 
CBayes, or both, will improve. 
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Figures at the end of the chapter show the full precision/recall graphs for all fields— 
Figures 6.3 through 6.6 for the seminar announcement fields; Figures 6.7 through 6.11 for 
the acquisitions fields; and Figures 6.12 through 6.16 for the WebKB fields. Examination 
of these graphs corroborate the insight that regression stands to be improved. In several 
cases, although combining methods yield a general improvement in precision and recall, 
their high-precision performance is worse than that of the best individual learner. A striking 
example is the graph for crsTitle (Figure 6.13. That the high-confidence predictions of the 
combining methods fare worse than those of SRV on this field indicates that, for whatever 
reason, they are placing undue trust in the predictions of learners that are worse than SRV. 
This can only mean that regression models for the various learners are faulty, and that better 
models in all likelihood will lead to better performance. 

6.4   Discussion 

In spite of the flaws, these experiments are a success. They show that it is consistently pos- 
sible to find more instances of a field, and to make fewer errors in the process, by attacking 
the problem with a heterogeneous set of learning algorithms. It would be desirable to ap- 
ply this general idea to problems other than information extraction. This section discusses 
the factors peculiar to information extraction that contribute to the success of these meth- 
ods and speculates about their application to other tasks. I have argued in favor of diverse 
representations for information extraction, but have pursued solutions that involve diverse 
learners. The final part of this section distinguishes these two concepts and discusses their 
connection. 

6.4.1   Favorable Factors 

What, then, are the factors associated with information extraction that contribute to the 
success of this multistrategy approach? There are several, among them the following: 

• Examples have multiple representations. Because documents and text fragments 
are "natural" objects which must be mapped to appropriate representations for learn- 
ing, multiple mappings are possible. Although some information is necessarily lost in 
any one mapping, we can hope that taking multiple views of a document will permit 
better overall performance. Thus, to the extent that a problem has been "denatured," 
that the representation of objects has been fixed, we might expect that value of a 
multistrategy approach to decrease. This is not to suggest that multistrategy learning 
will not work for such problems; it is simply to say that the opportunity afforded by a 
natural object for a large number of views with greater complementarity leaves more 
room for improvement by means of multistrategy methods. 

• The problem is essentially Boolean. Performing extraction can be reduced to the 
task of accepting or rejecting candidate text fragments. Consequently, we can gauge 
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a learner's performance on validation documents in an attempt to model the relation- 
ship between prediction confidence and probability of correctness. 

• Each document is a case study. In contrast with a traditional classification problem, 
each performance unit, a document, is a collection of test problems. Overgeneration, 
the problem of saying yes to too many text fragments, can be regarded as an asset 
when multiple learners are available. It both affords more data for our attempt to 
model a learner's usefulness, and holds forward the hope that the poor predictions of 
a single learner can be corrected by checking them against those of other learners. 

Of these three conditions, perhaps only the first one is necessary. The other two con- 
ditions enhance the applicability of this approach, but their absence does not mean it will 
not work. To try this approach, it is sufficient to have a reasonably heterogeneous set of 
learners—at least two—each of which is implemented to return a confidence with each 
prediction. Thus, a good target for further experiments along these fines is the problem of 
document classification, where state-of-the-art learning approaches typically make predic- 
tions based on the values of real-valued functions. And because document classification 
works with the same kinds of objects as information extraction, we can hope that the idea 
of taking multiple views in classification will lead to better performance there, as well. 

6.4.2   Representation and Learning Paradigm 

It is intuitively appealing to consider the various ways in which a document can be rep- 
resented, and to imagine how these views might be integrated for information extraction. 
And it seems evident that the best possible performance depends on good integration of 
views. In spite of all the emphasis on representation, however, what I have presented in 
this thesis is not a decomposition and integration of representations, but a set of learning 
algorithms from various paradigms. 

Clearly, example representation and learning paradigm are distinct concepts. For ex- 
ample, BayeslDF might be enhanced so that it captures some of the typographic informa- 
tion, such as capitalization, that is accessible to SRV. This would amount to a change in 
representation, but not learning paradigm. It might be argued that, by advocating multiple 
representations and presenting solutions that involve multiple strategies, I have confounded 
two distinct ideas. 

In fact, while the two ideas are distinct, they are not entirely separable. Choice of 
learning paradigm does constrain the set of possible representations. It rules out some rep- 
resentations, and renders other representational options less appropriate. If the learning 
paradigm is regular grammar inference, then examples must be expressed as symbol se- 
quences. If it is propositional rule learning, then examples must be fixed-length feature 
vectors. 

And some representational choices, while possible for an algorithm, may not be advis- 
able. As suggested above, in addition to simple term frequency counts, BayeslDF might 
also count the number of times capitalized tokens or numbers occur in and around field 
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FIGURE 6.3: Precision/recall plot comparing the best individual learner (SRV) with the 
three combining methods on the speaker field from the seminar announcement domain. 

instances, and attempt to integrate this information into its estimates. The more such fea- 
tures are added to its calculations, however, the greater the violation to the independence 
assumption. Thus, the style of learner makes certain representations less feasible. 

Each of the learners embodies a number of representational commitments, some forced 
by the choice of paradigm, others adopted as appropriate to the learner. The view Bayesl DF 
takes of a document may be strictly more limited than SRV's, but this very limitation 
makes it useful in a multistrategy setting. Rote illustrates this even more graphically. It 
is the least flexible of the four learners, a fact which makes its predictions very valuable 
for certain problems. In other words, the criteria by which we judge learning approaches 
in a strictly comparative setting may be insufficient for a multistrategy setting. The repre- 
sentation hmitations of an approach, either prescribed or voluntary, may be precisely what 
makes it useful. 
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FIGURE 6.4: Precision/recall plot comparing the best individual learner (SRV) with the 
three combining methods on the location field from the seminar announcement domain. 
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FIGURE 6.5: Precision/recall plot comparing the best individual learner (SRV) with the 
three combining methods on the stime field from the seminar announcement domain. 
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FIGURE 6.6: Precision/recall plot comparing the best individual learner (SRV) with the 
three combining methods on the etime field from the seminar announcement domain. 
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FIGURE 6.7: Precision/recall plot comparing the best individual learner (SRV) with the 
three combining methods on the acquired field from the acquisitions domain. 
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FIGURE 6.8: Precision/recall plot comparing the best individual learner (SRV) with the 
three combining methods on the purchaser field from the acquisitions domain. 
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FIGURE 6.9: Precision/recall plot comparing the best individual learner (SRV) with the 
three combining methods on the acqabr field from the acquisitions domain. 
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FIGURE 6.10: Precision/recall plot comparing the best individual learner (BayesGI) with 
the three combining methods on the dlramt field from the acquisitions domain. 
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FIGURE 6.11: Precision/recall plot comparing the best individual learner (Rote) with the 
three combining methods on the status field from the acquisitions domain. 
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FIGURE 6.12: Precision/recall plot comparing the best individual learner (BayesGI) with 
the three combining methods on the crsNumber field from the WebKB domain. 
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FIGURE 6.13: Precision/recall plot comparing the best individual learner (SRV) with the 
three combining methods on the crsTitle field from the WebKB domain. 
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FIGURE 6.14: Precision/recall plot comparing the best individual learner (SRV) with the 
three combining methods on theprojTitle field from the WebKB domain. 
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FIGURE 6.15: Precision/recall plot comparing the best individual learner (BayesGI) with 
the three combining methods on the crslnst field from the WebKB domain. 
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FIGURE 6.16: Precision/recall plot comparing the best individual learner (SRV) with the 
three combining methods on the projMember field from the WebKB domain. 



Chapter 7 

Related Work 

This chapter discusses work related to each of the individual learners presented 
in this thesis—the two term-space learners, BayesGI, and SRV. It attempts to 
cover both the relevant precedent for the general paradigm from which each 
learner is drawn, as well as previous applications of similar learners to the 
problem of information extraction. It also considers related previous work in 
the general problem of multistrategy learning. 

The individual learning methods described in this paper are all instances—or combina- 
tions of instances—of classes of algorithms which have been investigated for some time in 
machine learning. And related algorithms have found application as components of vari- 
ous information extraction systems. This chapter is concerned with detailing both kinds of 
precedent, as well as pointing to related work on multistrategy learning. 

7.1    Term-Space Learning 

Rote and BayeslDF, as term-space learners, have many relatives in the literature on in- 
formation extraction and similar disciplines. The term-space representation of a document 
is closely related, on the one hand, to the "bag-of-words" model, which is at the heart 
of much work in information retrieval and document classification; and, on the other, to 
representations typically used for statistical language modeling. 

We can infer that something like Rote is often used as part of systems designed for 
MUC. An important component in many MUC systems is a domain-specific dictionary 
containing keywords and phrases peculiar to the target domain (e.g., (Noah and Weeks, 
1993; Muraki et al., 1993)). Rote can be regarded as an automated method for constructing 
such dictionaries, which are typically build by hand. In a MUC system, such a dictionary is 
typically used to permit syntactic and semantic analysis of proper nouns and jargon as part 
of a wider information extraction effort, rather than as a standalone slot filling component. 
The effectiveness of a simple memorizing learner for slot filling appears not to have been 
studied prior to this thesis, probably because it would have very limited applicability for 
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the kinds of domains used as benchmarks in MUC. Rote's performance on the acquisitions 
domain gives us some intuition about how applicable it is for MUC-style problems. 

Rote, as a machine learning approach, is a convenient baseline against which more 
sophisticated approaches can be compared (Mitchell, 1997). It can be regarded as a degen- 
erate form of either &-nearest neighbor (Duda and Hart, 1973) or decision table learning 
(Kohavi, 1995). Naive Bayes, as an algorithm for standard feature-vector classification 
problems, is also often regarded as a baseline method. Unlike Rote, however, Naive Bayes 
can be competitive with more powerful methods (Domingos and Pazzani, 1996). 

What I have called the term-space representation is the standard baseline approach for 
research in information retrieval and document classification. In these fields the bag-of- 
words model is typically employed, in which only term occurrence information, along with 
a statistically motivated term weighting scheme, is used. The TFTDF weighting scheme 
serves as the starting point for many investigations into corpus-based document manage- 
ment. The SMART document indexing system is prototypical of this scheme (Salton, 
1971). The idea of term-space representation of text is attributable originally to Luhn 
(Luhn, 1958), and the idea of a Bayesian treatment for document classification to Maron 
(Maron, 1961). Lewis gives a thorough treatment to the use of Bayesian methods for text 
classification and retrieval (Lewis, 1992) and provides a large list of pointers to related 
research (Lewis, 1997). 

In the MUC context, statistical methods have been used for various sub-tasks of the 
larger information extraction problem, including pre-extraction filtering (Cowie et al., 1993), 
syntax modeling (Weischedel et al, 1993), and co-reference resolution (Kehler, 1997). At 
least one MUC system uses Bayesian techniques to support the slot-filling task (August and 
Dolan, 1992). These techniques are rarely described thoroughly in the MUC proceedings, 
however, and the literature lacks any detailed description of them. 

7.2    Grammatical Inference 

Regular grammars are an appropriate formal tool for use in many tasks involving processing 
or classification of sequences of objects. Manually designed regular grammars have found 
application both for sub-tasks of the larger information extraction problem (e.g., syntax 
modeling (Appelt et al, 1995)), and as a means of expressing extraction patterns (Evans et 
al, 1996). Stochastic regular grammars are closely related to Markov models, which are 
a statistical formalism widely applied in machine learning and related disciplines (Rabiner 
andJuang, 1986). 

Beginning with Gold (Gold, 1967), who made a theoretical survey of the space of 
problems and introduced some central definitions, the problem of grammatical inference 
has undergone considerable theoretical development and found diverse application (Vidal, 
1994). Gold showed that the problem of finding the minimum-sized FSA accepting a finite 
training sample is NP-complete (Gold, 1978). This result notwithstanding, researchers 
have introduced methods that rely on special problem settings, such as learning by querying 
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a teacher (Pao and HI,   1978), and sub-classes of the set of regular languages (Angluin, 
1982). 

The term (regular) grammatical inference denotes approaches that seek to learn the 
topology of a grammar. In contrast, a Hidden Markov Model has a fixed topology, and the 
object is to bring model transition and emission parameters into conformance with observed 
data (Rabiner and Juang, 1986). An exception is the work of Stolcke and Omohundro, in 
which both the topology and model parameters of a Markov model are updated during 
training (Stolcke and Omohundro, 1994). 

The general problem of grammatical inference assumes the availability of positive and 
negative examples, sequences from some language L and its complement L, respectively. 
An algorithm for this setting is RPNI (Oncina and Garcia, 1992), a state-merging approach 
similar to Alergia (Carrasco and Oncina, 1994), which uses the negative data to prevent 
over-generalization. Note that the RPNI algorithm assumes no overlap between positive 
and negative sequences (i.e., consistency), a condition that typically does not obtain in our 
experiments. There are alternatives to the state-merging methodology described in this 
chapter. One of these is ECGI (Error-Correcting Grammatical Inference), which incre- 
mentally patches a grammar under construction to agree with new training data (Rulot and 
Vidal, 1988). In the original experiments on which this chapter is based, I compared Aler- 
gia and ECGI for this task, and obtained slightly worse performance from ECGI (Freitag, 
1997). 

Rivest introduces the notion of decision lists and discusses the class k-DL of decision 
lists having conjunctive clauses of size k at each decision (Rivest, 1987). In these terms, 
the algorithm used to produce alphabet transducers in this thesis outputs lists belonging to 
1-DL. In broader terms, the phrase "decision list" is frequently used to describe machine 
learning algorithms in the covering family, such as AQ, CN2, and FOIL (Michalski, 1983; 
Clark and Boswell, 1991; Quinlan, 1990). 

Finite state machines have been used to model linguistic syntax in at least one suc- 
cessful MUC system, but these were manually designed (Appelt et al, 1995). Kushmer- 
ick discusses learning patterns from a sub-class of the regular languages, specifically for 
the purpose of performing information extraction from Internet documents (Kushmerick, 
1997). His work targets a restricted class of domains involving highly regular patterns, 
such as Web pages automatically generated from relational databases. Wrapper-induction 
algorithms have since been produced that are more flexible in their handling of pattern el- 
ements and that can model embedded repeating structures (Muslea et al, 1998). Closer 
to the work presented here is that of Goan, et al., who present a modification of Alergia 
designed to perform a variation of the MUC named entity recognition task (Goan et al, 
1996). Their algorithm allows for the integration of prior knowledge regarding character 
classes and can learn to recognize short, typographically distinct patterns, such as phone 
numbers and technical report codes. Bikel, et al., in a system they call Nymble, apply a 
hidden Markov model to the MUC named entity recognition task (Bikel et al., 1997). The 
named entity problem involves extracting the names of entities belonging to some generic 
class. With the seminar announcements, for example, this might involve extracting the 
names of all people listed in a document, not just that of the speaker. To support learning, 
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Nymble uses a set of simple "word features" that are quite similar to those used in these 
experiments. However, the feature set used is constructed so that only one of these Boolean 
features returns true for any given word. Thus, the problem of word representation and the 
need for transduction is circumvented manually. 

7.3   Relational Learning 

Rule-learning symbolic algorithms have been successfully applied to both the document 
classification problem (Apte et al., 1994; Cohen, 1995) and NLP tasks related to informa- 
tion extraction (Cardie, 1993; Aone and Bennett, 1996; McCarthy and Lehnert, 1995). 
Early work in learning extraction patterns focused on the induction of simple rule-like 
features, which were then manually installed into larger information extraction systems 
(Riloff, 1996; Kim and Moldovan, 1995). 

CRYSTAL was the first system to treat the information extraction task as a supervised 
learning problem in its own right (Soderland, 1996; Lehnert et al, 1992). CRYSTAL is 
a covering algorithm, which conducts a specific-to-general (bottom-up) search for extrac- 
tion rules. Rules in CRYSTAL are generalized sentence fragments. The feature set used 
by CRYSTAL is implicit in its search operators. It consists of literal terms, syntactic rela- 
tions, and semantic noun classes. Thus, one generalization step CRYSTAL can take is to 
replace a literal term constraint with the semantic class to which it belongs. These semantic 
classes are a manually designed input to the algorithm. A potential strength of the approach 
taken by CRYSTAL, compared with that described here, is its ability to generate rules to 
extract multiple distinct field instances in concert. It is as if we set out to learn rules to 
recognize seminar start time and end time together. Each unique combination of slot fillers 
encountered together in some sentence in the training data is treated as a different learning 
problem. Webfoot is a modification of CRYSTAL for HTML (Soderland, 1997). Instead 
of sentences, Webfoot trains on text fragments that are the result of a heuristic segmentation 
based on HTML tags. 

Rapier is closest to the approach described here (Califf and Mooney, 1997). Rapier is 
a specific-to-general relational learner designed to handle informal text, such as that found 
in Usenet job postings. In contrast with CRYSTAL, for which examples are sentences (or 
parsed sentence fragments), Rapier searches the less structured space of unparsed text frag- 
ments. Rapier is relational in that it in principle can exploit unbounded context surrounding 
field instances. It generalizes by dropping constraints from, or introducing disjunctions of 
constraints to, overly specific rules. Constraints are either actual terms, which must appear 
in the text for a rule to match, or part-of-speech labels. It appears, however, that Rapier 
could be adapted to exploit the kind of typographic information used by SRV. 
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7.4   Multistrategy Learning 

The combination of BayeslDF with grammatical inference is an example of multistrategy 
learning (Michalski and Tecuci, 1994). Whereas the bulk of work in multistrategy learning 
has been directed at the problem of combining analytical and inductive methods, here we 
combine two inductive learners. This has been called "empirical multistrategy learning" 
(Domingos, 1996). 

I have also used the term "multistrategy learning" to refer to the framework in which in- 
dividual learners are used as input to a combining method, which treats them as black boxes 
and attempts to model their behavior in pursuit of improved performance. Similar work has 
been called meta-learning (Chan and Stolfo, 1993). One method in which diverse learners 
can be combined which has received considerable attention in the machine learning com- 
munity is the weighted majority algorithm and its variants (Littlestone and Warmuth, 1994; 
Cesa-Bianchi et al., 1997). Algorithms in this family come with theoretical guarantees that 
combined performance will be not much worse than the performance of the best individual 
learner. 

Cross-validation has been shown to be an effective way to select from among multiple 
candidate learning methods (Schaffer, 1993). In the cited study, however, a single learner 
is selected for an entire test set, and no attempt is made to combine learner predictions for 
individual examples. 

Multistrategy learning, i.e., combining diverse learners, is not the only answer to hard 
problems. Related ideas can be brought to bear when only a single learner is available. 
Recent years have seen the development of a family of approaches, so-called ensemble 
methods—such as bagging (Breiman, 1996), boosting (Freund and Shapire, 1996), and 
stacking (Wolpert, 1992)—which involve training a single learner repeatedly on different 
parts of a problem and combining these "specialists" for improved performance. 



Chapter 8 

Conclusion 

This concluding chapter summarizes the primary contributions of this thesis to 
research into learning for information extraction. It makes three such contri- 
butions: It tracks the performance of fixed learning approaches across several 
diverse domains; it compares several novel learning approaches drawn from 
a range of paradigms; and it shows how to combine these learners for im- 
proved extraction performance. This chapter also summarizes insights gained 
concerning the best use of the various learners. Finally, it identifies several 
promising directions for future research. 

The focus of this research is the problem of information extraction: how to find a frag- 
ment of text in a document that answers a standard question. Its emphasis is on "informal" 
domains, domains for which linguistic processing is either infeasible or unnecessary, such 
as collections of Web pages or newsgroup posts. This thesis casts the problem as a choice 
among the many alternative fragments in a target document. I have argued that a good tar- 
get function for learning is one that maps an individual text fragments to a real number—a 
confidence that the fragment is an instance of the target field. Extraction then boils down 
to eliciting the learner's output for all possible field instances in a document and selecting 
the one or more fragments for which the learner's confidence is greatest. 

This approach—mapping fragments to real numbers—also facilitates the adaptation of 
standard machine learning algorithms to the information extraction problem. I have taken 
this as an opportunity to compare learners based on a number of learning paradigms, in- 
cluding statistical and term-space learning, grammatical inference, and relational learning. 
Different learners, I have argued, exploit different aspects of the total information avail- 
able in a document. I have sought, therefore, to combine learners in order to improve 
performance on any given extraction problem. This thesis demonstrates one way to do this 
without reference to the details of any learner's implementation. Finally, because of my 
emphasis on informal domains, domains that violate assumptions of linguistic good form, 
each of the four learning algorithms described in this thesis is designed to make minimal 
assumptions about target documents. This makes it a simple matter to compare the learn- 
ers over several different domains. Experiments reported in this thesis use three domains 
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defined over three very different text genres: newsgroup posts, newswire articles, and Web 
pages. 

8.1    Contributions 

The contributions made by this thesis fall into four areas: 

• It addresses the question, how to conduct information extraction in informal domains, 
domains characterized by unparsable language and dominated by non-linguistic pre- 
sentational devices. 

• It presents several different learning approaches and compares their effectiveness. 
Each of the learners is novel. Where similar learners have been used in the litera- 
ture, this thesis either presents the first full explication of an approach or introduces 
important variations. 

• It shows how to perform multistrategy learning, or learner combination, for substan- 
tially improved performance. 

In this section I elaborate on each of these points in turn. 

8.1.1    Informal Domains 

There has been much interest recently in the problem of data mining, in both the academic 
and financial communities. Many of the large data repositories now in existence are col- 
lections of text. Because information extraction lies on the critical path to the successful 
mining of such repositories, it is only natural that the definition of information extrac- 
tion has expanded to include unconventional sources. Originally, information extraction 
was concerned with carefully authored documents, such as newswire articles and techni- 
cal manuals. Since the inception of the discipline, however, the world has accumulated 
a wealth of information in documents constructed under less formal conditions—in Web 
pages, email messages, Usenet posts. 

I have operated under the assumption that natural language processing, at its current 
level of development, will be slow to reach competence in such genres. Note that it is not 
just a matter of, say, learning how to parse email message. As technology evolves, new 
genres of text will be born, each of which may violate assumptions made for older genres. 

One of my central questions, therefore, has been, how far can we get without linguistic 
processing? Answering this question involved two things. On the one hand, it led to the 
design of learners inspired by techniques in information retrieval and statistical document 
classification. The result was Rote and BayeslDF, learners which operate with no more 
information than the occurrence patterns of raw tokens. On the other hand, it prompted me 
to investigate the usefulness of information that is readily accessible in English text without 
sophisticated processing. Two things resulted from this effort: a core set of features that 
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captured superficial aspects of text, such as capitalization and token type (e.g., numeric, 
punctuation), and learners designed to exploit these features—SRV and an approach based 
on grammatical inference. 

8.1.2   Comparison of Learning Methods 

Several recent works have introduced new learning approaches for information extraction. 
This thesis, however, constitutes the first comparative study. Instead of a single new learner, 
I have introduced four new approaches and conducted a rigorous comparison. This compar- 
ison, in addition to corroborating the prevailing assumption that rule learning is as effective 
a paradigm as any for information extraction, turned up some surprises. 

Rote learning performs surprisingly well on certain kinds of fields, and it performs best 
on one of the fields with which I experimented. I would argue that, given its occasionally 
strong performance, Rote should be a required baseline for future experiments in this area.1 

In contrast with more sophisticated learners, the workings of which can be difficult to ex- 
amine, Rote is transparent. The performance of Rote can serve as one measurement of the 
difficulty of a specific information extraction task. And Rote is easy to implement; it em- 
bodies few subtleties that might complicate the comparison of results among researchers. 

BayeslDF, too, forms a convenient baseline. Both Rote and BayeslDF make minimal 
assumptions about the domains on which they will be applied. And they are fast, spending 
only seconds on a test document. As part of conducting a comparative study of learning 
approaches for information extraction, therefore, I have introduced two learners that can 
supply useful baselines. 

Measured against these baselines, the remaining two learners, BayesGI and SRV, ap- 
pear superior. BayesGI, a hybrid of BayeslDF and the grammatical inference algorithm 
Alergia (Carrasco and Oncina, 1994), is designed specifically to correct for BayeslDF's 
inability to represent the appropriate structure of a field's instances. The introduction of 
this structural information yields substantial jumps in both precision and recall, except on 
those few fields on which BayeslDF achieves almost perfect performance by itself. 

Clearly the best of algorithms tested, SRV is a relational learner for information ex- 
traction. Not the first such learner, SRV nevertheless differs from related work in three 
respects: 

• It conducts the search for individual rules in the general-to-specific direction. 

• It has an explicit set of features that are the building blocks of the extraction patterns it 
learns. This set is extensible, making it easy to introduce domain-specific information 
to SRV. 

• It follows training with a validation step used to assign confidence scores to SRV's 
predictions. This makes it possible to trade precision for recall, and vice versa. 

1One wonders how far a rote learner would get on some of the traditional MUC problems. For example, 
is seeing the token "FMLN" sufficient to know that the FMLN is responsible for the terrorist attack described 
in an article? 
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8.1.3   Multistrategy Learning 

There are two examples of multistrategy learning in this thesis. First is the combination of 
BayeslDF and Alergia. The result is a learner more powerful than either constituent. While 
it is well accepted in the machine learning community that such combinations can lead 
to improved performance, this particular algorithm is a particularly striking example. Its 
success supports my contention that tasks involving natural objects, objects which permit 
several more or less orthogonal representations, are good targets for multistrategy learning. 

BayeslDF and grammatical inference were chosen for these experiments because of the 
complementarity of their representations. The hybrid learner BayesGI is a tight, manually 
engineered coupling of the two constituent learners. In Chapter 6 I introduced a second, 
looser form of learner combination, one which treats individual learners as experts to be 
consulted in making a combined decision. This method is an instance of the class of voting 
schemes and meta-learning which are by now also regarded as tried and true techniques in 
the machine learning community. The application of this approach to information extrac- 
tion, however, is quite novel. As with BayesGI, I show that this multistrategy approach 
can yield unusually large improvements. Once again, the problem of information extraction 
proves to be a good target for multistrategy learning. I speculate that one of the reasons for 
this is the fact that we can play with representations; a document is a natural object, many 
representations of which are possible. 

8.2   Insights Gained 

In addition to these major contributions, this research has afforded many minor insights. 
This section lists the most salient insights, particularly those into the applicability of the 
individual learners. 

No single approach is best. The comparative results show that there is no single learner 
that always performs best, and the multistrategy results show that even the best learner, in 
any given case, usually stands to improve. 

Information extraction is many problems. A correlary to the previous point is that 
information extraction is best regarded as a collection of related problems. This is true in 
a couple of senses. First, there is no guarantee that because a learner performs well on 
one field, it will perform well on another, even one from the same domain. What is more, a 
single field may embody many kinds of patterns, and the suitability of a learner may depend 
on which of these patterns it is able to find and exploit. Second, information extraction 
benefits from decomposition. BayesGI illustrates this well: Two learners, one specializing 
in statistical contextual patterns, the other specializing in the typographic structure of field 
instances, can be joined to produce a learner stronger than either individual approach. 

Rote is well suited for skewed phrasal distributions. An approach like Rote is 
called for when field instances are highly typical of a field and atypical of text occurring 
outside a field. Of course, the other prerequisite is that field instances tend to be repeated 
verbatim in multiple documents. Thus, a field on which Rote excels is the location field in 
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the seminar announcements domain. It is highly unusual to encounter room designations 
in this domain in any other role than as the location of a seminar, and exceptions to this 
rule usually correspond to rooms that are not used for seminars, such as private offices. 
In contrast, stime, the start time of a seminar, does not have this characteristic. Times are 
reasonably common in the seminar announcements, and they serve a number of purposes. 
Thus, Rote's performance on this field is much worse than that of competing learners. 

BayeslDF is well suited for strong Stereotypie contextual patterns. While it is 
generally not sufficient to recognize times in order to find instances of stime, start times 
in the seminar announcement domain are very often surrounded by strong clues. A large 
proportion of the start times in this domain are preceded by the phrase, "Time:". A 
preponderance of such clues allows BayeslDF to achieve near perfection on this field. 

SRV and BayesGI are good for fields characterized by strong typographic pat- 
terns. Examples of such fields are crsNumber, the university-assigned number of a course 
on the course home page, and location, the location of a seminar listed in an announcement. 
University course numbers tend to follow certain patterns readily expressible in precisely 
the language given to these two learners. Although the details vary across universities, it 
nevertheless is often possible to express patterns that cross university boundaries, such as 
"look for a short token in upper case followed by a number." 

SRV is more versatile in expressing typographic patterns. In contrast with BayesGI, 
SRV is not constrained to express patterns that account for all the tokens in a fragment. If 
the important pattern over a set of fragments involves only the first and last tokens, SRV 
can capture the pattern directly, while the performance of BayesGI may be hurt by the 
requirement that it mention all tokens. 

In spite of its ability to explore unbounded context, SRV is best at local patterns. 
In contrast with BayesGI, SRV can also search for simple abstract patterns in the language 
surrounding a set of field instances. My experience is that in order for such patterns to be 
found, they must be quite local. SRV's ability to explore arbitrary contexts notwithstand- 
ing, the most important patterns are still local. In order for SRV to reach far beyond the 
boundaries of a field, it must first find something of value in the immediate context. And, 
typically, by the time a rule has extended its consideration very far into the context, its cov- 
erage is reduced to the point that finding good patterns is a challenge. Even when provided 
with relational features that allow large jumps (and relational features are particularly ex- 
pensive), the value of such features must be greater than that of patterns to be found closer 
to home. As a consequence, I have not seen many high-quality rules that express non-local 
patterns. 

None of the learners can express global patterns. None of the learners is able to say 
anything about the page in which it is searching or larger structures in which field instances 
may be embedded. A number of recent papers have reported on information extraction 
"wrappers," typically used with HTML. A common assumption made by such algorithms 
is that fields will appear as part of embedded, repeating structures. One field for which such 
an approach might be applicable is projMember, instantiations of which are the names of 
a project's members as fisted on the official project home page. Project pages tend to 
present members in simple itemized lists and to include member-specific information in 
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very regular patterns. The way in which the learning problem is formalized in this thesis 
cannot exploit such repeating, highly regular patterns. 

8.3   Open Questions 

Any thesis raises new questions while it answers old ones. A thesis like this one, the subject 
of which is novel and relatively unexplored, seems to raise more questions than it answers. 
Areas ripe for incremental improvement are hinted at in the various chapters. SRV, for 
example, might be strengthened in any number of ways. New predicate types might allow 
it to learn more effective rules. Its efficiency might be improved in several ways, leading 
to a more useful algorithm. Better stopping criteria and accuracy estimation could lead to 
small but useful increases in precision and recall. Similarly, there is much work left undone 
on the subject of multistrategy learning, particularly in the details of regression. 

Rather than concentrate on such minor refinements, however, in this final section I want 
to draw attention to the holes, beginning with the small ones, those that might be patched 
with a few month's work, and moving to truly large open questions. I identify five open 
problems, and attempt to assess the magnitude of each: 

• Grammatical inference over feature vectors Because of the sequential structure of 
the information extraction problem, grammatical inference is an appealing source of 
candidate algorithms, but assumptions underlying existing approaches fail to make 
use of the wealth of information available in text. Because the grammar-induction- 
by-state-merging paradigm is well developed and can serve as a starting point for 
investigations, this is probably a short-term problem. 

• Exploiting field co-occurrence Treating the extraction of each field as a separate 
learning problem is both unrealistic and wasteful of available information. Some 
previous work shows how to exploit highly regular or local field co-occurrence, but 
a general approach is lacking. This item really comprises two research directions, 
a short-term and a medium-term one. On the one hand, given a document, one can 
take a learner's (or several learners') predictions for multiple fields and attempt to 
optimize the global extraction. On the other hand, designing learning algorithms that 
take into account field co-occurrence in the training phase is an interesting problem 
with a possibility of real impact. 

• Using linguistic information Although SRV is sufficiently flexible to make use of 
syntactic and semantic information more or less directly, in the only experiments I 
performed in this vein providing linguistic information to SRV yielded little benefit. 
I suspect the reason for this is SRV's representation of the problem of information 
extraction, one which, to my knowledge, it shares with all other learning systems for 
information extraction: It assumes that information local to a fragment is sufficient to 
determine its status. Perhaps, to use linguistic information effectively, it is necessary 
to take a non-local view, to carry constraints between sentences. Doing this in a way 
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that supports learning for information extraction without solving the natural language 
processing problem is probably a sufficiently big problem for at least one dissertation. 

• Using layout All of the learners presented in this thesis assume that a document is a 
sequence of terms. SRV can exploit non-linear structure, but not the two-dimensional 
structure so apparent to the human eye perusing a document. I surmise that layout 
is very useful in many information extraction problems, particularly those involving 
HTML or informally constructed ASCII documents, but there is no reason to prefer 
any of several possible approaches as this point. Consequently, there are probably a 
number of interesting conference papers hiding in this problem. 

• Information extraction as navigation A human searching for a datum in a doc- 
ument, particularly documents with interesting layout, quickly identifies promising 
regions and skips intervening text. In contrast, the approaches I have described ex- 
haustively examine all fragments in a document from first to last. This strongly 
suggests a change or augmentation of problem representation might prove valuable. 
An interesting starting point might involve modeling the human approach to the 
task—probably a thesis-sized work. Failing that, perhaps the problem can be cast as 
one of navigation through a document, and perhaps learning for sequential decision 
making—reinforcement learning—can serve as a fund of useful ideas. Which ideas 
and how they should be applied is certainly also a good subject for a dissertation. 

8.3.1    Grammatical Inference over Feature Vectors 

Strongly influenced by the study of formal languages, grammatical inference generally 
assumes that the universe consists of sequences of symbols from some finite alphabet. In- 
formation extraction is a good target application for grammatical inference, because of its 
essentially sequential nature. I have argued that words, rather than, say, individual char- 
acters, form the right level of granularity at which to apply grammatical inference to this 
problem. But words, of course, are relatively complicated objects, having a number of rele- 
vant dimensions—morphology, semantics, orthography, typography, etc. In order to apply 
grammatical inference, words must be replaced by symbols from a canonical alphabet. The 
larger this alphabet, the greater the need for data to support effective generalization. Thus, 
in order for grammatical inference to be effective, all the relevant features and their values 
must be reduced to a comparatively small number of symbols. 

My method for inferring transducers is one way in which such reduction may be con- 
ducted, but it is hardly ideal. In fact, any method which conducts the reduction before 
grammatical inference is unsatisfactory. The decision about how to represent an object 
with multiple features ought to be an integral part of the learning algorithm; it ought to 
be driven by the same criteria that drive state merging. Is it possible, however, to adapt 
existing grammatical inference algorithms, so that, in addition to deciding which states to 
merge, they also choose abstractions over the objects involved? 

To make the discussion a little more concrete, let us suppose we have two seminar start 
times "1:00  pm" and "1:30  PM". We might modify an algorithm like Alergia (Carrasco 
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and Oncina, 1994), in the hope that it might unify these two fragments. Recall that Alergia 
works by iteratively combining pairs of states it judges equivalent, and that in order to do 
this, it compares the emissions assigned to transitions out of the states. Suppose Alergia is 
considering a merge between the two states corresponding to "00" and "3 0" in the above 
fragments, and suppose the merge will be assessed as warranted only if the tokens "pm" 
and "PM" can be taken as equivalent. It is trivial to see that the merge is warranted, yet 
while the two tokens have very similar feature vectors, they are not identical. The value 
of a feature such as capitalized differs for the two tokens. On what basis should Alergia 
decide to make this merge, and how should the unified transition be represented—as the 
intersection of shared feature values? 

Markov models are an alternative to the grammatical inference approach. Rather than 
learn topology, one might attempt to learn a set of weights in a grammar with fixed topol- 
ogy. And it should be possible to extend the standard hidden Markov model algorithms, 
which like grammatical inference algorithms assume observations arrive as sequences of 
symbols, to take into account all feature values simultaneously. Whether there is any virtue 
in doing this is an interesting question for future research. 

8.3.2   Exploiting Field Co-occurrence 

Information extraction involves mapping a document to a composite structure that repre- 
sents essential aspects of its meaning. It has been convenient for me to regard this as a 
bundle of learning problems, one for each field in the structure. And in simple cases, in 
cases where each field can be extracted reliably enough, it may be sufficient to extract each 
field separately and assemble the structure by combining its constituents after prediction. 
Clearly, though, this approach is not sufficient for the general information extraction prob- 
lem. What goes into each field will often be strongly influenced by other fields. If one 
believes a seminar will begin at 1:30 p.m., one will not consider 10:00 a.m. as a candidate 
end time. 

It is possible to begin to take steps toward exploiting field co-occurrence with the tech- 
niques I have presented in this thesis. The best point of departure for such an endeavor 
is the multistrategy setting described in Chapter 6. Starting with all predictions returned 
by all learners for a given document, rather than decide for each field separately, it might 
be possible to improve performance by taking a view that considers the global effect of 
field assignments. If I decide, based on what my information extractors tell me, that the 
purchaser field begins the lead paragraph in an article detailing a corporate acquisition, 
then my expectation that acquired will be instantiated a few words downstream in the same 
sentence should be strongly increased. 

Ideally, however, the co-occurrence of fields should directly inform learning for infor- 
mation extraction. Co-occurrence might mean proximity, as in the acquisition example in 
the previous paragraph, or semantic constraint, as in the start time/end time example. Se- 
rializing the extraction problems, perhaps from easiest to hardest, so that training for the 
harder fields can take into account predictions for the easier ones, is one step in this di- 
rection. There are problems with this approach, however. Not only might it be non-trivial 
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to order fields, but care must be taken so that learner errors on the early fields do not hurt 
performance on the later ones. 

It is not clear, therefore, that the learners presented in this thesis can exploit field co- 
occurrence without redesign. Note that at least one existing learning system for informa- 
tion extraction, CRYSTAL (Soderland, 1996), is designed to predict for multiple fields at 
once, but only when they are instantiated together within the bounds of a single sentence. 
And CRYSTAL treats each such combination of fields as a separate learning problem, 
thereby reducing the number of training examples in problems that typically are already 
data-sparse. Therefore, the problem of exploiting field co-occurrence is far from solved. 
Whether it involves simple modifications to one or more of the existing learners, or the 
design of entirely new algorithms is a question for future research. 

8.3.3   Using Linguistic Information 

My focus has been on domains characterized by "messy" text, text for which automatic 
linguistic processing is difficult. Consequently, I have investigated inexpensive features, 
features that are available in any domain and readily computable. In one set of experi- 
ments, described in Chapter 5, I attempted to integrate syntactic and lexical information 
into learning, in the hope of demonstrating the versatility of SRV. Results were mixed, and 
I was unable to conclude that SRV can make use of such information. 

Some kind of linguistic information can be obtained for any information extraction do- 
main, and any such information that is practical to obtain ought to be used. While previous 
work on learning for information extraction has assumed that linguistic information should 
be the substrate on which learning is conducted—and has gotten good results—my work 
has failed to demonstrate much benefit. This raises a number of questions: 

• Is linguistic information really that useful for information extraction? Might it be 
the case that, in most domains, learning can be as effective with inexpensive non- 
linguistic information? 

• Did the noise I introduced while obtaining linguistic information for my experiments 
simply outweigh any benefit SRV might have gotten from it? 

• Is SRV simply ill suited to use linguistic information? 

My limited experiments in this area do not give enough information to begin answering 
these questions. It is worthwhile to attempt to answer them, however. Obtaining good 
syntactic and semantic information is often difficult, particularly in the kinds of domains 
I have investigated, but if it means an improvement in accuracy, it is probably worth the 
cost. Note that there is plenty of room for improvement in the acquisitions domain. In 
order to make substantial headway in this domain, it may be necessary to represent the 
semantic content of the articles in a limited way. This may entail a completely new problem 
representation and new learning approaches. 
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Inasmuch as natural language processing is an open problem, we must content ourselves 
with incomplete and noisy information. One possible approach might involve recovering 
co-reference chains before training for information extraction. Previous attempts at learn- 
ing for information extraction assume that co-reference resolution, if it occurs at all, is 
a subsequent step. It seems more appropriate, however, to express extraction patterns in 
terms of all the information contained in a co-reference chain—if it can be recovered reli- 
ably. And of course, a learner designed to induce such patterns would look quite different 
from the ones described in this dissertation. 

8.3.4   Using Layout 

While linguistics is an obvious source of potentially powerful information for information 
extraction, this thesis has not exhausted the wealth of cheap information available in many 
domains. One such source, which I invoked as one motivation for this thesis, is layout. In 
fact, there appears to be an inverse relationship between linguistics and layout. In domains 
that are problematic for natural language processing, layout is often used as a presentational 
device. Two good examples are the WebKB documents and the seminar announcements. 
In Web pages, layout controls are explicitly inserted into documents and are consequently 
available to learners like SRV. In documents belonging to the genre from which the seminar 
announcements are taken (email message, Usenet posts), on the other hand, layout consists 
of patterns of whitespace usage and alignment with document margins. It is less obvious 
in such a case how layout is to be used. 

Yet layout appears to have large heuristic value for humans confronted with such doc- 
uments. A simple experiment convinces one of this. Take a typical seminar announcement 
and reduce all whitespace to individual spaces, converting the text into a single block flush 
with the margins. Search for the seminar speaker in the original and modified documents. 
While one's eye can often glide directly to the desired information in the version preserving 
layout, one is reduced to linear scanning in the modified one. 

It may be possible to make some use of layout by encoding aspects of it for a learner 
like SRV. Lost with such an approach, however, is any conception of larger layout struc- 
tures, such as paragraphs and headers, and the ways in which these structures interact to 
convey meaning to the user. Seminar start times, for example, often occur in the header 
of an announcement. Message headers have a two-dimensional profile quite distinct from 
other large textual objects.2 It is an interesting problem for pattern recognition, perhaps 
drawing inspiration from machine vision, to detect such larger text structures. In some 
cases, however, it may suffice to recognize individual text objects; it may be necessary to 
express patterns over multiple such objects. As in the extraction problem at the token level, 
the task in this case is to pick contiguous blocks of text out of the context of a larger se- 
quence. It remains to be seen whether ideas that have proven useful at the token level can 
be applied at this level, too. 

2Of course, there exist very simple heuristics for finding the header. This discussion is meant to serve as 
an example of a pattern recognition problem that has many more subtle instantiations. 
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8.3.5   Information Extraction as Navigation 

In order to make good use of layout, perhaps it will be necessary to change the basic 
problem representation. The representation I adopted assumes that information extraction 
can be reduced to accepting or rejecting candidate fragments. This representation casts 
the problem as classification, and allows us to apply more or less standard classification 
techniques, but it is easy to criticize. In particular, it discards context almost completely 
and pretends that these fragments are so many marbles drawn from an urn, when in fact 
they overlap densely to form a document. If one fragment is determined to be almost a 
seminar speaker—perhaps, for example, it has one token too many on the right—there is 
no way to use this information in searching for overlapping fragments. 

The Gedankenexperiment with the layout of the seminar announcement suggests an 
alternative problem representation. Rather than classification, can we profitably treat in- 
formation extraction as navigation! Clearly, there is a strong navigational component in 
a human's approach to the task. What would it take to emulate this algorithmically? Per- 
haps we can imagine something like a robotic window that starts its search at the upper 
left-hand corner of a document and is charged with the task of wandering around in search 
of the seminar speaker. We could equip this robot with a number of sensors, some of them 
simple derivatives of the kinds of features used in this thesis, others built to measure things 
like global characteristics of layout. 

Results reported at MUC, as well as those presented in this thesis, suggest that there is 
plenty of room for improvement on the problem of information extraction. Perhaps we have 
reached a ceiling of sorts, and maybe the best hope for further progress involves emulating 
the human approach to the task. If this entails actually understanding the contents of a 
document, then we will have to wait until natural language understanding matures. A 
premise of information extraction as a field of study, however, is that useful things can be 
gleaned from a document without understanding it. This dissertation adds to the evidence 
that this is true. It remains to be seen what additional approaches are currently within our 
reach. 
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Domains 

For this thesis I have experimented with several information extraction domains. Here, I 
describe the three domains that form the basis of the reported results. 

A.l    Seminar Announcements 

The seminar announcement collection consists of 485 postings to electronic bulletin boards 
that are part of the online environment of the Computer Science Department at Carnegie 
Mellon University. The purpose of every document in this collection is to announce an 
upcoming project meeting or seminar. As motivation for this domain, we imagine an intel- 
ligent agent that can monitor university bulletin boards and summarize upcoming seminars 
for its user. Such an agent might also attempt to infer whether a seminar is interesting, and 
might insert details of the seminar, when ordered to do so, into the appropriate slot of the 
user's electronic calendar. In our collection, these details are presented in a variety of ways 
(see Appendix B). More often than not, they do not occur in full, grammatical sentences. 

We defined four fields for these experiments: 

speaker The name of the seminar speaker, including honorifics. First names by themselves 
are not considered instances, but surnames are, when preceded by honorifics. 

location The location of the seminar, typically the name or number of a room. 

stime The time at which the seminar is scheduled to begin. 

etime The time at which the seminar is scheduled to end. 

Of these four fields, the speaker field is the most difficult, start time easiest. Whereas start 
time tends to be listed in relatively regular contexts, the speaker often appeared as part of a 
prosaic description of the event. I defined both start and end times to emphasize the need 
for disambiguation from context. 

Some characteristics of the document collection are shown in Table A.l, and of the 
individual fields in Table A.2. "Strawman accuracy" is the performance of an algorithm 
that issues random guesses in the manner described in Chapter 2. 
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Number of files: 
Smallest: 
Largest: 

Mean size: 

485 
99 tokens 
3175 tokens 
335 tokens 

TABLE A. 1: Corpus statistics for the seminar announcement domain. 

speaker location stime etime 
Number in corpus 757 643 982 433 
Distinct phrases 491 243 151 93 
Number of files with 409 464 485 228 
Minimum in file 0 0 1 0 
Maximum in file 9 4 4 3 
Mean number in file 1.6 1.3 2.0 0.9 
Smallest (in tokens) 1 1 1 1 
Largest (in tokens) 11 14 7 7 
Mean size (in tokens) 2.7 3.8 3.6 3.7 
Strawman accuracy 1.2% 0.7% 1.4% 1.0% 

TABLE A.2: Field statistics for the seminar announcement domain. 

A.2   Newswire Articles on Acquisitions 

The acquisitions domain contains 600 articles on corporate acquisitions taken from the 
Reuters data set (Lewis, 1992). Reuters, a standard source of data for experiments in doc- 
ument classification, consists of 21,578 newswire articles produced by the Reuters press 
service in 1987. Along with its text and title, each article in the collection has been manu- 
ally assigned zero or more class labels, which are intended to represent the subject of the 
article. 

Among the most populous of the Reuters classes is the "acquisition" category, consist- 
ing of 2253 articles. The theme of a typical article in this class is the buying or selling 
of some corporate entity or asset by another corporate entity or person. In the majority of 
cases, this transaction is the focus of the article; in others, the article describes some event 
associated with continuing negotiations. Article detail varies widely, from one-sentence 
mentions of an acquisition in the offing, to multi-paragraph descriptions of the parties in- 
volved. 

In designing an information extraction domain from this dataset, I imagined a business 
user for whom it is important to know the most salient facts of the case—e.g., who is buy- 
ing whom, and for how much. In deciding what kinds of information would be useful to 
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acquired Entity that is purchased 

purchaser Purchasing company or person 

seller Selling company 

acqabr Short name for acquired 

purchabr Short name for purchaser 

sellerabr Short name for seller 

acqloc Location of acquired 

acqbus Description of acquired'^ business 

dlramt Purchasing price 

status Status of negotiations 

FIGURE A. 1: Fields defined for the acquisitions domain. 

this person, I took my cues from the articles themselves, defining fields which were instan- 
tiated with reasonable frequency in the articles I reviewed. In addition to the buyer, seller, 
and purchased company or asset, articles typically reported the status of negotiations— 
beginning, tentatively completed, completed, broken off—and how much was paid. Also, 
it is common to provide a little background information about the purchased company, such 
as location and line of business. 

Figure A.l shows the ten fields I converged on. Note that, in addition to the kinds of 
information described in the preceding paragraph, I defined three fields for the short names 
of companies typically used in the body of the article, after a paragraph listing the parties 
in terms of their official names. I assumed that a user of the system would want the official 
names, but I did not want to discard the potentially valuable information present in these 
short references. I imagined that these short names would be easier for a learning system to 
identify, because much more frequent, and that, having identified them, the system could 
improve its performance on the official names. Thus, the short names were defined less 
with a human user in mind, than as a partial decomposition of the domain. 

Perhaps it does not need to be noted that not all articles fit readily into this structure. 
First, there was a considerable number that did not correspond to this pattern at all, and 
which I passed over in defining the domain. These included a few articles, which occasion- 
ally occur in the general Reuters dataset, that consist only of a headline. There were also 
long articles which either did not focus on a single acquisition—an article, for example, 
describing the reaction of the U.S. Congress to the spate of acquisitions of American com- 
panies by foreign investors—or had as their subject some narrow aspect of an acquisition 
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Number of files: 600 
Smallest: 37 tokens 
Largest: 811 tokens 

Mean size: 146 tokens 

TABLE A.3: Corpus statistics for the acquisitions domain. 

event, the details of which were assumed to be known, so were not given in the article. I 
excluded these, as well. 

Among the articles I did include, however, there was wide variance in the degree to 
which the extraction template could be conveniently filled out. Perhaps the majority of 
articles fit the mold without much ambiguity, but a sizeable number were close enough in 
character to the excluded articles described above to make the decision whether to include 
them difficult. In addition, corporate acquisitions can be considerably more complicated 
than the flat template structure I adopted suggests. In some cases, they involve outright pur- 
chase. In others, they involve simply an increase in holdings of a companies public shares, 
from, say, 25% to 38%. In still other cases, they involve something difficult to phrase con- 
cisely, such as changing the rights and privileges of the board members of a child company 
in exchange for increased say in company direction. Enriching the template structure could 
make it better suited to the task of summarization at the expense of increased difficulty in 
labeling, as well as, I believe, in learning. In an information extraction application, one 
would want to put considerable thought into this "adequacy-tractability" trade-off. Since 
my focus is the learning methods that I expect to perform the extraction, I opted for the 
simplest, most transparent representation. 

The fields, too, varied in ease of instantiation. All articles included the full names of the 
buyer, seller, and bought company, when they existed. Also, the short name fields were, by 
definition, easy to identify, when present. Text corresponding to the other fields, however, 
sometimes violated the assumption that field instantiations will be short and contiguous. 
For example, the terms under which an acquisition is completed sometimes take several 
sentences to explain; consequently, I only instantiated a dlramt field when the article pre- 
sented a succinct monetary amount as the value of the deal. No real entity described in 
the articles corresponded to the status field; rather, I took short, suggestive noun or verb 
phrases, such as "completed" or "agreement in principle," which I assumed would convey 
the state of negotiations to a human reader. Finally, acqloc and acqbus shared a partic- 
ular characteristic: Although it was easy to identify these fields in text, they sometimes 
allowed single-token instantiations (e.g, "bank") and other times took up the better part of 
a sentence (e.g., "Oregon, Washington, and several cities in California"). 

Table A.3 shows some characteristics of the document collection. Table A.4 summa- 
rizes characteristics of individual fields. 
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acquired purchaser seller acqabr purchabr sellerabr acqloc acqbus dlramt status 
Number in corpus 683 624 267 1450 1263 431 213 264 283 461 
Distinct phrases 589 533 232 609 627 256 168 236 181 189 
Number files with 593 545 235 437 445 182 178 230 259 453 
Minimum in file 0 0 0 0 0 0 0 0 0 0 
Maximum in file 8 11 5 24 18      j 12 7 4 3 2 
Mean in file 1.1 1.0 0.4 2.4 2.1 0.7 0.4 0.4 0.5 0.8 
Smallest (tokens) 1 1 1 1 1 1 1 1 1 1 
Largest (tokens) 13 17 10 6 8 6 14 13 9 12 
Mean size 3.5 3.2 3.2 1.4 1.4 1.5 2.8 3.3 3.2 2.2 
Strawman accuracy 1.4% 1.3% 1.3% 7.0% 5.8% 4.6% 1.4% 1.0% 1.2% 0.9% 

TABLE A.4: Field statistics for the seminar announcement domain. 

A.3    University Web Pages 

The "University Web Pages" domain is really a set of related domains defined for samples 
from the same large document collection. This collection was constructed as part of the 
World Wide Knowledge Base (WebKB) effort, the goal of which is a system capable of 
automatically constructing knowledge bases by browsing the Web. The focus of the project 
is the use of machine learning methods to support this effort. Our experiments in these do- 
mains constitute one component of a multi-pronged initiative, which includes explorations 
in statistic document classification, and classification of pages based on Web connectivity, 
among other things. 

The data set from which I sampled to create these domains consists of 4,127 Web pages 
associated with computer science departments from four large university: Cornell, Univer- 
sity of Texas, University of Washington, and University of Wisconsin. As part of initial 
experiments, these pages were labeled by hand to indicate membership in seven mutu- 
ally exclusive categories: department, faculty, staff, student, research project, course, and 
other. 

A.3.1    Course Pages 

The Course Pages domain is a sample of pages labeled course in the WebKB data set, and 
some additional pages I collected while labeling. Only "top-level" course pages receive the 
course label in this collection; associated pages, such as those listing assignment due dates, 
are labeled other. I found that this labeling scheme missed some pages containing instances 
of fields I wanted to define, so I treated the WebKB labeling as a guide and browsed around 
the pages labeled course to find replacements, more current pages, or supplementary pages. 

For this domain I defined three fields: 

crsNumber The university code identifying the course 

crsTitle The official title of the course 

crslnst The names of all instructors and teaching assistants 
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Number of files: 
Smallest: 
Largest: 

Mean size: 

101 
89 tokens 
2631 tokens 
633 tokens 

TABLE A.5: Corpus statistics for the WebKB course pages sub-domain. 

crsNumber crsTitle crslnst 
Number in corpus 296 165 216 
Distinct phrases 86 70 149 
Number of files with 94 88 95 
Minimum in file 0 0 0 
Maximum in file 10 12 25 
Mean number in file 2.9 1.6 2.1 
Smallest (in tokens) 1 1 2 
Largest (in tokens) 4 7 6 
Mean size (in tokens) 1.8 3.2 2.3 
Strawman accuracy 
Mine 

3.3% 1.4% 0.9% 

TABLE A.6: Field statistics for the WebKB course pages sub-domain. 

The crslnst field is one of two "many-per-document" (MPD) fields used in thesis experi- 
ments. Instances of all fields were manually annotated. 

Table A.5 presents statistics of the WebKB course pages corpus. Table A.6 lists char- 
acteristics of the individual fields. 

Number of files: 96 
Smallest: 26 tokens 
Largest: 2242 tokens 

Mean size: 421 tokens 

TABLE A.7: Corpus statistics for the WebKB project pages sub-domain. 
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projTitle projMember 
Number in corpus 352 1A1 
Distinct phrases 73 578 
Number of files with 80 66 
Minimum in file 0 0 
Maximum in file 28 39 
Mean number in file 3.7 7.8 
Smallest (in tokens) 1 2 
Largest (in tokens) 10 8 
Mean size (in tokens) 2.2 2.3 
Strawman accuracy 7.8% 7.2% 

TABLE A.8: Field statistics for the WebKB project pages sub-domain. 

A.3.2   Research Project Pages 

The Research Project Pages domain was created in a way identical to the Course Pages 
domain. For this domain I defined two fields: 

projTitle The title given to the project by its members 

projMember The names of all members, including principle investigators, graduate and 
undergraduate members, affiliated researchers, and project alumni 

The resulting collection consisted of 96 annotated project pages. The projMember field 
is the second of two MPD fields used in thesis experiments. Tables A.7 and A.8 present 
corpus and field statistics, respectively, for this domain. 



Appendix B 

Excerpts 

This appendix presents excerpts of documents from the three thesis domains. For the reader 
with no experience in information extraction, the discussion in Chapter 2 will help provide 
a basic understanding but may leave many holes in his or her intuition for the problem. 
Similarly, without experience in any of the domains discussed, researchers in information 
extraction and related disciplines may have difficulty relating the work described in this 
thesis to their own. This appendix is an attempt to compensate for these deficits. 

Excerpts are presented with as much context as possible—entire short documents in 
many cases. My object is to illustrate the range, and not necessarily to reflect the distri- 
bution, of styles and subject matter in each domain. Both common and some interesting 
uncommon patterns are included. | Boxes | identify instances of fields that are the targets of 
thesis experiments. 

B.l    Seminar Announcements 

The seminar announcements differ from the other two domains in the preponderance of 
their use of simple labels to communicate essential details. Often, important details of 
upcoming seminars, including those that are targets of information extraction, are preceded 
by a suggestive phrase and a colon. Table B.l presents an excerpt that is unusual, in that 
all essential details are presented in this way. The label/colon device is used for one or 
more of the four seminar announcement fields in a majority of documents. In few of the 
documents, however, is it used as extensively as in the figure. 

Many seminar announcements convey essential details in a single short paragraph con- 
sisting of one or a few sentences. Most such paragraphs are reasonably well-formed gram- 
matically, although they often contain terms unlikely to appear in the lexicon of a general- 
purpose NLP system, terms such as "nano-rheology" the names of speakers. The paragraph 
in Table B.2 is typical of the form of such announcements, but atypical in its ungrammati- 
cality. Note that here, too, the label/colon device is used to announce the start time, which 
is fisted again (in a slightly different form) in the message body. Both stime instances are 
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<0.2 6.4.95.11.09.31.hf08+@andrew.cmu.edu.0> 
Type: 
Topic: 

Dates: 

Time: 

Place: 
PostedBy: Helena R. 
Abstract: 

emu.andrew.academic.bio 
nMHC Class II: A Target for Specific Immunomodulation of the 
Immune Response" 
3-May-95 
3:30 PM 

Mellon Institute Conference Room 
Frey on 2 6-Apr-95 at 11:09 from andrew.cmu.edu 

Seminar: Departments of Biological Sciences 
Carnegie Mellon and University of Pittsburgh 

Name: Dr. Jeffrey D. Hermes 
Affiliation: Department of Autoimmune Diseases Research & Biophysical Chemistry 
Merck Research Laboratories 
Title: "MHC Class II: A Target for Specific Immunomodulation of the 
Immune Response" 
Host/e-mail: Robert Murphy, murphySa.cfr.cmu.edu 
Date: Wednesday, May 3, 1995 
Time:  3:30 p.m 

Place: 
Sponsor: 

Mellon Institute Conference Room 
MERCK RESEARCH LABORATORIES 

Schedule for 1995 follows: (as of 4/26/95) 
Biological Sciences      Seminars 1994-1995 
Date       Speaker       Host 
April 26       Helen Salz       Javier L~pez 
May 3       Jefferey Hermes       Bob Murphy 
MERCK RESEARCH LABORATORIES 

TABLE B.l: A complete seminar announcement illustrating the common use of the la- 
bel/colon device. 

<0.22.2.95.09.47.47.ed47+@andrew.emu.edu.0> 
Type:     emu.andrew.official.emu-news 
Topic:    Physics Colloquium,Feb. 27 
Dates:    27-Feb-95 
Time :     I 4 : 3 0 PM I 
PostedBy: Edmund J. Delaney on 22-Feb-95 at 09:47 from andrew.cmu.edu 
Abstract: 

Steve Granick Physic Colloquium, Monday, Feb. 27, 
Illinois, Urbana, "Soft matter in a tight spot: 

polymers and complex fluids 
p.m. 

4:30 p.m 

University of 
nano-rheology of 

Coffee at 4:15 7500 Wean Hall 

TABLE B.2: A complete seminar announcement illustrating the use of a single short para- 
graph to convey essential details. 
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<0.23.5.95.16.22.55.ed47+@andrew.emu.edu.0> 
Type:    cmu.andrew.official.emu-news 
Topic:    Psychology Post-Doc Talk 
Dates:    25-May-95 
Time: 12:00 PM 
PostedBy: Edmund J. Delaney on 23-May-95 at 16:22 from andrew.cmu.edu 
Abstract: 

Patricia Brooks 
Post-doctoral assistant 
Department of Psychology 

Carnegie Mellon University 

Phonological and Semantic Priming in Children's Picture Naming 

Thursday May 25, 1995 

Baker Hall 355 

12 noon 
Phonological and semantic priming was explored in children using a 
cross-modal picture-word interference paradigm.  Pictures of familiar 
objects (e.g., snake, moon, hand) were presented to 5- to 11-year-olds 
and adults on a computer screen while digitized auditory stimuli (words 
and non-words) were presented simultaneously over head-phones. The 
auditory stimuli were related (phonologically or semantically) or 
unrelated to the names of the pictures. Children were instructed to name 
the pictures as quickly as possible while ignoring the auditorily 
presented items. Children were tested over multiple sessions to vary the 
stimulus onset asyncrony (SOA--the interval between presentation of the 
prime and presentation of the picture-to-be-named). Robust phonological 
priming occurred which was influenced by the lexical status of the prime 
(whether it was a non-word or a real word) and by whether the prime 
shared the onset consonant or rhymed with the name of the target 
picture.  In contrast, semantically-related auditory stimuli did not 
facilitate children's picture naming. 

TABLE B.3: A complete seminar announcement illustrating the mixing of prose with other 
devices and the use of centering. 

counted for the purposes of training, and extraction of either counts as a correct response 
during testing. 

Most of the seminar announcements mix prose paragraphs and a variety of other pre- 
sentational devices. One particularly common device is centering, illustrated in Table B.3. 
Essential details are approximately centered (centering of the speaker's name in Table B.3 
is very approximate!) at the top of the message body without labels or other text. Full 
paragraphs of grammatical text follow—often the talk abstract or biographical information 
on the speaker. Of course, though common, centering is not the only layout device used. In 
Table B.4, the author appears to be emulating features of typeset text, such as itemization, 
italics and headlines. Note that this announcement does not list a speaker, although it does 
include a name. 

Table B.5 illustrates the use of a device that is uncommon in this domain, a table. The 
approach to learning taken in this thesis, the representation of the text as a sequence of 
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<0.2 8.4.95.10.13.54.rf51+@andrew.emu.edu.1> 
Type:     cmu.andrew.assocs.gso 
Topic:   UTC Summer Seminars for Graduate Students 
Dates:    24-May-95  

2:00 4:00 PM Time: 
PostedBy: Rea Freeland on 28-Apr-95 at 10:13 from andrew.cmu.edu 
Abstract: 

University Teaching Center 
Support for Graduate Students -- Summer 1995 

The combination of activities below is designed to assist current and 
prospective TAs as well as graduate students who are preparing for 
future academic positions involving teaching.  The seminars were 
selected to be repeated based on attendance in and feedback about 
previous series.  Those of you interested in other specific issues may 
be interested in programs we 
conduct in addition to the seminars. 

Included below is information on the following programs: 
- Summer Seminars on Teaching 
- Videotaping and Feedback Opportunities 
- Observations and Consultations 
- Ongoing Reading/Discussion Group 
- Documentation of Teaching Development 

***Pre-registration is required; please see the end of this post for 
instructions. *** 

SEMINARS ON TEACHING 
The six seminars below count toward the Documentation of Teaching 
Development Program. 

Overview of Student Motivation 
Wednesday, May 24 2:00  -  4:00 PM Carnegie Conference Room, Warner Hall 

Instructors often take for granted that our students have the motivation 
to learn what we teach,  but the level or type of motivation varies 
greatly with different courses, assignments and students.  This seminar 
will provide a framework of theories of motivation and provide 
opportunities to discuss how instructors can engage students more fully 
in learning in their courses. 

TABLE B.4: A complete seminar announcement illustrating how itemizations, italics, and 
headlines are emulated. 
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<0.2.10.94.14.09.41.dd7a+@andrew.emu.edu.9> 
Type:    emu.andrew.org.epp 
Topic:    CEE EES Seminar Series 
Dates:    21-Oct-94 
Time: 2:30 
PostedBy: David Adam Dzombak on 2-Oct-94 at 14:09 from andrew.cmu.edu 
Abstract: 

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING 
CARNEGIE MELLON UNIVERSITY 

ENVIRONMENTAL ENGINEERING AND SCIENCE SEMINARS 
FALL 1994 

DATE 

10/21c 

ROOM TIME SPEAKER 

PH A18C 2:30 Mr. Raj at Ghosh 

CEE 

TOPIC 

Modeling of In Situ 

Solvent Extraction of 
Coal Tar: Interrupted 
Pumping Process 

TABLE B.5: A complete seminar announcement illustrating the use of an ad hoc table. 

MERIDIAN ENERGY |} , | CASTONE | END LETTER OF INTENT 

} and CHICAGO, March 26 Meridian Energy Inc Castone 

Development Corp 

that they have decided to 

which Meridian 

, a privately-held company, jointly announced 

under terminate the letter of intent 

would have acquired Castone . 
Reuter 

TABLE B.6: A typical short article from the acquisitions domain. 

tokens, cannot cope with such structures. While an understanding of layout, of the text as 
a two-dimensional object, appears useful in some of the other excerpts, here it is critical. 
Note that the talk title in this fragment cannot be extracted by any system under the linear 
representation. This suggests that a domain-independent solution to information extraction 
cannot ignore layout. 

B.2   Acquisitions Articles 

The format of acquisitions articles varies very little from document to document. Each such 
document consists of a headline, a date line, and one or more paragraphs of journalistic 
prose. Rather, articles vary stylistically and in their subject matter. They may adhere to 
journalistic conventions that appear to govern the narration of acquisitions, or they may 
follow an unconventional style. They may describe an acquisition directly, or they may 
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{| VIA |} SETS RECORD DATE FOR MERGER VOTE 

NEW YORK, March 2 6 

April 6 as the 

Viacom International Inc said it set 

record date for shareholders entitled to vote at 
a special meeting to be held to vote on the proposed merger of 

Arsenal Acquiring Corp , a wholly-owned subsidiary { Arsenal 

Holdings Inc } into Viacom 

It said the date of the special meeting has not yet been 
determined. 
Reuter 

TABLE B .7: A complete acquisitions article, the subject of which is not directly a proposed 
or completed acquisition but a byproduct of one. 

VIDEO DISPLAY 

ATLANTA, 

{VIDE} 

March 3 

TO SELL CABLE TV UNIT 

Video Display Corfp said it has reached 

tentiative agreement to sell its existing cable television 

business for undisclosed terms and expects to report a gain on 
the transaction.  The buyer was not named. 

The company said it will redeploy its service assets into 
manufacturing and distribution. 

It said the operations being sold accounted for about five 
pet of revenues for the year ended February 2 8 and lost money. 

TABLE B.8: A complete acquisitions article in which many details, including the buyer, 
are not listed. 

focus on an event only associated with an acquisition. 

Tables B.6 and B.7 present two articles that differ in this second way. The article in 
Table B.6 directly describes the outcome of an acquisition negotiation. The article in Ta- 
ble B.7 relates an event associated with such a negotiation—a shareholder's meeting to vote 
on the proposed acquisition. This distinction may be of relevance for information extrac- 
tion. The language of the former kind of article tends to follow very regular conventions. 
Typically a company "says" or "announces" that something has happened, an acquisition 
has been completed, for example, or a rival has made a bid for outstanding shares of the 
company's stocks. In the latter kind of article, a company may make an announcement, 
but about something ancillary to the acquisition process. This may result in difficulty for 
the human labeler to fit the article into the template defined for the domain. In Table B.7 
I tagged the phrase "record date" as an instance of the status field, but this does not fit the 
semantics of this field well, as defined by other instances in the corpus. As a consequence, 
it is unlikely that any learner would correctly extract this phrase. 
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ALCAN AUSTRALIA BIDS FOR ALCAN NEW ZEALAND 

SYDNEY, March 27 Alcan Australia Ltd 

make a 39.3 mln N.Z. Dir bid 

Alcan New Zealand Ltd 

{AL.S} said it will 

for all the issued shares of 

Dlrs each with a 

cash 

at 1.80 N.Z 
four-for-three share alternative. 

Both are 70 pet owned by Canada's Alcan Aluminium Ltd AL 

which will take the share swap option, Alcan Australia deputy 
chairman Jeremy Davis said in a statement. The remainder of 

's totalled issued 21.84 mln shares are Alcan New Zealand 

broadly held while 

institutions. 

Alcan Australia 's are primarily held by 

Alcan NZ last traded at 1.55 NZ dlrs, while Alcan 

Australia today ended four cents down at 1.15 dlrs. 
Davis said the offer, which is subject to approval by the 

New Zealand Overseas Investment Commission, was a response to 
the integration of the two countries' markets under the 
Australia-New Zealand Closer Economic Relations treaty. 

Alcan New Zealand shareholders who accept the offer would 
also receive the final dividend of 10 cents a share normally 
payable on May 27. 

would invite New Zealand representation to Alcan Australia 
its board and would apply to list its shares on the New Zealand 
Stock exchange, Davis said. 
REUTER 

TABLE B.9: A complete acquisitions article illustrating some of the subtleties involved in 
distinguishing the roles of companies. 

|GERBER| {GEB} SETS DEADLINE FOR UNIT'S BUYOUT 

FREMONT, MICH., April 3 Gerber Products Co said it has 

management of its CWT Inc trucking given 

pursue a leveraged buyout of the subsidiary. 

It said 

subsidiary 60 days to 

CWT Inc which has operations in the Midwest and 

Southeast has annual revenues of approximately 135 mln dlrs. 
Reuter 

TABLE B. 10: Another acquisitions article in which the parties are identifiable but difficult 
to extract. 

Acquisitions articles also vary in the amount of detail they provide. Table B.8 adheres 
to conventions of presentation common in this domain, but many of the usual details are 
missing. Also, instead of a company name, the acquired field is instantiated here as "cable 
television business." While it is more common for company names to appear in this field, 
occasionally an asset or resource, as in this article, is the object of purchase. 

Tables B.9 and B.10 present two articles that illustrate how some of the assumptions 
that underlie the definitions of fields are stretched by some of the articles. The canonical 
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INVESTOR GROUP PUTS PRESSURE ON | GENCORP| {GY} 
By Patti Domm, Reuters 
NEW YORK, March 30 - An investor partnership, seeking to 

said it would attempt to unseat the GenCorp Inc acquire 

company's board of directors and take other 

the firm refuses to discuss its 

hostile actions if 

2.3 billion dir takeover bid. 

General Acquisition Co comprising investors Wagner and 

Brown and glass-maker AFG Industries, also reiterated its 
willingness to negotiate with Gencorp 

The partnership has earlier offered 100 dlrs per share for 

a GenCorp tire, broadcasting, plastics and aerospace 

conglommerate. 

TABLE B.l 1: Beginning of an acquisitions article in which one of the main parties is not 
mentioned in the first paragraph. 

acquisition event involves a company (the purchaser) buying another company (the ac- 
quired company), possibly from a third company (the seller). It is more or less difficult to 
fit each of these articles into this mold. In the article in Table B.9 one company makes a 
bid for its sibling. The names of the siblings, as well as that of the parent company, which 
is also listed in the article, are all similar to each other, enough so that an automatic system 
might easily become confused. Note that "Alcan New Zealand" occurs lower in the article 
but is not tagged. Mis-tagging or failure to tag instances is noise which may or may not 
affect learner performance, but which is an almost inevitable feature of any hand-labeled 
extraction problem. 

The relationships between the parties are even stranger in the article in Table B.10. 
The management of a company is seeking to purchase the company itself from the parent 
company. It is difficult to tag such an article in a satisfactory way. As it is, the acquired 
field is instantiated simply as "management." In this article we also see typical examples 
of how acqbus ("trucking") and acqloc ("Midwest and Southeast") are instantiated. 

The article in Table B.l 1 deviates considerably from conventions of presentation. As is 
very often true, the main verb of the first sentence is "said," but its subject, the purchaser, 
is an anonymous "investor partnership." The correct instantiation of purchaser, however, 
does not occur until the beginning of the second paragraph—"General Acquisition Co." 
If a system is to make the correct extraction in this case, it evidently needs to associate 
phrases such as "an investor partnership" and "the partnership" with the actual instance, 
which does not occur in the same sentence as either of these phrases. In other words, 
it needs to perform anaphora resolution. Note, incidentally, the instantiation of acqbus— 
"tire, broadcasting, plastics and aerospace"—which is quite different from, and longer than, 
the instantiation in Table B.10. 

Purchasers and sellers are occasionally people, as in Table B.l2. Because we are not 
guaranteed that instances of acquired, purchaser, and seller are all companies, named entity 
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INVESTOR HAS 8.0 PCT OF ALLEGHENY INT'L 
WASHINGTON, March 30 - A group of firms and funds 

controlled by New York investor Mario Gabelli 

{AG} 
d 

said it has 

acquired the equivalent of 882,507 shares of Allegheny 

International , or 8.0 pet of the total outstanding. 
In a filing with the Securities and Exchange Commission, 

the Gabelli group said it bought the stake as part of its 
business and not in an effort to seek control of the company. 

It said it may by more shares or sell some or all of its 
current stake. The stake includes 782,000 common shares and 
cumulative convertible preferred stock which could be converted 
into 100,507 common shares. 
Reuter 

TABLE B.12: A complete acquisitions article in which one of the main parties is an indi- 
vidual, rather than a company. 

recognition is less useful as a pre-processing step than it might otherwise be. Named entity 
recognition is the problem of identifying instances of generic classes such as people and 
companies without determining their specific role in a document. As a pre-processing step 
for purchaser, it clearly would be useful, but at least two such tasks—one for the names 
of companies, the other for people—would be necessary, meaning additional subsequent 
work at disambiguation. 

B.3    University Web Pages 

Table B.13 illustrates a typical form course pages take. The crsNumber and/or crsTitle 
fields are instantiated in the HTML title and between <h?>-tags in the body of the page. 
When the two fields are instantiated together, crsTitle often follows crsNumber. This ex- 
cerpt also contains an instance of crslnst. Note the paucity of clues surrounding this in- 
stance. The fact that this instance is centered was not available to SRV in the experiments 
presented in Chapter 5, because instead of a <cent er>-tag, the author used an attribute of 
the <p>-tag; making such attributes available to SRV in the form of token features might 
be an interesting direction for future research. 

Recall that crslnst is a "many-per-document" (MPD) field, i.e., multiple instances can 
appear in a page, each representing a distinct entity. Tables B.14 and B.15 show two ways 
in which these instances can occur in course pages. In Table B.14 two instances occur in 
sequence, each preceded by a suggestive label. In Table B.15, in contrast, they are arranged 
in a table, and the header of the column in which they occur is the strongest evidence that 
they are field instances. In experiments with SRV on this domain, I introduced HTML- 
specific relational features like table_col_header, which maps a token in a column to the 
first token in the column header (e.g., "Shih" to "TA"). My hope was that this would enable 
SRV to find patterns such as this one. I saw little evidence, however, that such features 
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<html> 
<head> 
<title> 
</head> 
<body> 

CS113 Home Page</title> 

<hr> 
<hl> 
<p align=center> 

CS113 C Programming 

</hl> 

<h2> 
<p align=center> 

David Walker 
</h2> 
<h3> 
<p align=center> 
<Fall 1997, weeks 5- 
</h3> 
<hr> 

TABLE B. 13: The top of a typical course page from the WebKB domain. 

Lorenzo Alvisi <H2> <Strong> Professor: 
Office: Taylor Hall 4.122 <BR> 
Phone: 471-9792 <BR> 
Email: <A href="..."> lorenzo@cs.utexas.edu 
</A> <BR> 
Office Hours: Thursday 11:15-12:15. <BR> 
Help Sessions: 8:00-9:00AM Monday 
and Friday, in Welch 3.402. 

</Strong> </H2> 

Rupert Tang Lap Poon </Strong> </H2> <H2> <Strong> Teaching Assistant: 

Office: UA9 4.108e <BR> 
Phone: 471-9755 <BR> 
Email: <A href="..."> rupert@cs.utexas.edu 
</A> <BR> 
Help Sessions: 7:15-8:15PM Thursday and Friday, in Garison 301 <br> 
(one more help session to be decided) <brx/H4> 

TABLE B. 14: A course page excerpt in which instances of crslnst are listed linearly. 
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<h2ximg src=n..."> Teaching Assistants:</h2> 
<ul> 
<table border=2  cellspacing=l> 
<tr bgcolor=n#CCCCCC> 
<tdxcenterxb>TA</tdxtdxcenter>e-mail</tdx/tr> 
<trxtdxcenter> Thomas Yan 

Patrick White 

</tdxtdxa href=" . . . ">tyan@cs .Cornell. edu</ax/tdx/tr> 

</tdxtdxa href=". . . ">white@cs.Cornell .edu</ax/tdx/tr> 

Linda Shih-Chien Lee 

<trxtdxcenter> 

<trxtdxcenter> 
</table> 
<br> 
<img src="..."> 
<font color="#COOOOO">Office hours are now available</font> 
<a href="offhours.html"> here</a>. 

</tdxtdxa href=". . . ">sclee@cs . Cornell. edu</axtdx/tr> 

TABLE B.15: A course page excerpt in which a HTML table is used to present instances 
of crslnst. 

were used effectively. 

The projMember is also a MPD field and usually is instantiated more frequently in 
a page than crslnst. Table B.16 illustrates a common pattern of instantiation: a series 
of itemizations, the name of the project member beginning each item, perhaps followed 
by additional information such as title or email address. This pattern is so common that a 
wrapper approach seems appropriate, one which can take advantage of embedded repeating 
structures. 

Finally, Tables B.17 and B.18 present two typical contexts for instances of projTitle. 
Like crsTitle, instances of projTitle are often found in the HTML title or between <h?>- 
tags. Unlike crsTitle, projTitle instances are also often found in prose in the body of the 
page, as in Table B.18. Whereas course pages typically serve as an organizational tool 
for university courses, project pages have the additional function of advertising a research 
project to the world at large. Consequently, the goals and technical achievements of a 
project are often described in paragraphs of technical prose. In my experiments I did not 
attempt linguistic processing of these descriptions, but this might prove very useful for this 
field. 
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<H2xA Name="...">Principle Investigator</Ax/H2> 
<menu> 
<LI> <A HREF=°..."> 

Bart Miller </A> (Professor/Principle Investigator) 
</menu> 
<BR> 

<H2xA Name="...">Research Staf f</Ax/H2> 
<menu> 
<LI> <A HREF-"...n> 

Oscar Nairn </A> (Assistant Scientist) 
<LI> <A HREF="..."> 

Brian Wylie </A> (Associate Researcher) 

</menu> 
<BR> 

<H2xA Name=". . . ">Graduate Students</Ax/H2> 
<menu> 
<LI> <A HREF="..."> 

Matt Cheyney </A> (Research Assistant) 
<LI> <A HREF="■■. 

Karen Karavanic (Research Assistant) 
<LI> <A HREF=", 

Tia Newhall </A> (Research Assistant) 

TABLE B. 16: Project page excerpt showing a typical listing of members. 

Wisconsin Wind Tunnel Project Home Page </title> 

<html> 
<head> 
<title> 
</head> 
<body 
background="wwt_logo_background.gif" body text=n#000000n link="#000fff" 
vlink="#000aaa" 

<hr> 
<hl> 
<!--  Changed SRC="wwt_logo.gif" so ftp could be used to log accesses --> 
<IMG SRC="..." ALT="WWT Logo" ALIGN=MIDDLE> 

Wisconsin Wind Tunnel Project 

</hl> 
<hr> 
<P> 

TABLE B.17: Top of a project page showing instances of projTitle. 
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<TITLE> Condor Project Homepage</TITLE> 
<IMG ALIGN=MIDLLE SRC="..."> 

<HR> 

<H3> 
<A NAME=°...">Objective:</A> 
</H3> 

The goal of the Condor project is to develop, implement, deploy, and evaluate 
mechanisms and policies that support High Throughput Computing (HTC) on large collections 

TABLE B. 18: Top of a project page illustrating instances of projTitle in various contexts. 



Appendix C 

The Tokenizing Library 

AU of the learners presented in this thesis share a single code substrate, a C library called 
libtoken that takes care of converting documents into the representation presented in 
Chapter 2: A document is regarded as a sequence of tokens, and instances of a field take 
the form of unbroken subsequences. This library is compiled into SRV, which is also 
written in C. The other learners, which are implemented in Perl, make use of a Perl module 
called Token that defines Perl versions of most of the functions defined in libtoken. 

Any document representation makes some of the information contained in a document 
immediately accessible, makes some information available by reconstruction, and com- 
pletely discards some information. Because the set of problems a learner is able to address 
depends in part on which information is available, it is important to know the details of 
the representation. This Appendix presents those details. Of particular interest are some 
subtle differences between lib token's processing of HTML and that apparently used by 
related work. 

The primary function of 1 ibt oken is to represent a document as a sequence of tokens. 
This is accomplished by calling the function 

void p_parse(char *fname); 

providing it with the name of the file to process. This function is called once per document. 
A number of other functions then allow access to the information contained in the docu- 
ment. Calls to these secondary functions implicitly refer to the last document processed by 
p_parse. The document processed by p_parse is stored as a single array of tokens. A 
token is any sequence of characters matching the pattern [A-Za-zO-9 ] + or the pattern 
[ "A-Za-zO-9 \t \n], i.e., either an unbroken sequence of alphanumeric characters or 
a single non-whitespace character. Note that libtoken also stores information about 
whitespace, but it is neither represented in the central array nor easily accessible to client 
code. 

An index in the global array is assigned to each token matching the above patterns. 
Once parsing is complete, client code can access information about the contents of a docu- 
ment by means of functions like 

179 
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Time:   <stime>3:30 p.m</stime>. 
Place:   <location>Mellon Institute Conference 
Room</location> 

TABLE C.l: Excerpt from a seminar announcement showing annotation used to identify 
field instances. 

unsigned p_token_count (void) ; 

which returns the number of tokens in a document; 

char  *p_token(unsigned index,   char buf[],   unsigned bufsz); 

which returns a copy of the token occurring at position index in the document; and 

char *p.fragment(unsigned from, unsigned to, char buf[], unsigned bufsz); 

which returns a copy of the text beginning with the token at index from and extending to 
but not including the token at index to, including any whitespace. 

As part of labeling for information extraction, field instances are identified directly in 
documents by means of SGML-style tags. Table C.l shows an excerpt from a seminar 
announcement, complete with the tags that mark instances of two fields. One of the jobs 
of libtoken in tokenizing a document is to remove these tags while storing information 
concerning their position. In other words, these tags are not stored as tokens in the global 
array, and the functions described in the previous paragraph act as if these tags did not 
appear. This ensures that the essential information in a document, including its whitespace 
patterns, is not altered by the labeling process. 

Instead, a number of additional functions are defined which answer questions about the 
positions of, and information contained in, the tags. The two most important such functions 
are: 

int  p_in_field (unsigned  index,   char   *field); 

a Boolean function returning true if the token at index is in scope of tag whose name 
string matches the string in field, and 

int p-fields_at(unsigned index, char buff], unsigned bufsz, unsigned fbuf[], unsigned fbufsz); 

which returns an array of all fields in force at position index. 
Because the tags used to mark field instances are identical in form to HTML tags, 

libtoken "understands" HTML. One consequence of this understanding is that, like an- 
notations introduced for information extraction, HTML tags are removed from the internal 
document representation, and information about them is only made available through calls 
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to functions like those listed in the previous paragraph. What a client of libtoken sees 
of a Web page, therefore, is any text left over once tags have been removed. 

The effect of this representation when working with HTML can be good or bad, depend- 
ing on the intended application. For example, because libtoken also stores tag attribute 
information, which it makes available by additional functions, it is trivial to retrieve the 
set of URLs referenced in a page, as well as the text associated with each. It is easy to 
say whether a token occurs within scope of a tag, however large the tag's scope. Deter- 
mining whether it occurs next to a tag, however, requires at least two calls to libtoken's 
functions. 

Rote and Bayesl DF are handicapped with respect to HTML because, as a consequence 
of their reliance on 1 ibt oken, HTML tags are invisible to them. In contrast, SRV is pro- 
vided with a set of HTML features that query libtoken functions. Even for SRV, how- 
ever, some observations are difficult; in order to assert that a token occurs at the boundary 
of a HTML field, SRV must make two assertions: that the token occurs in the field and that 
the previous or next token occurs outside it. In contrast, much of the work on information 
extraction from HTML, including work on wrapper induction, assumes that HTML tags are 
directly visible to the learner. This may result in more competent extractors. It would be 
possible to modify 1 ibt oken so that tags other than those used for annotation are visible. 
For the sake of simplicity and clarity, however, I did not take this approach. 
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